Какие силы физика существуют в природе

Какие силы физика существуют в природе

Каждый день нам приходится сталкиваться с действиями одних тел на другие. Для понимания процессов, происходящих в окружающем нас мире, физики приложили немало усилий, чтобы понять, что происходит с одним телом при воздействии на него другого. И ученые смогли доказать, что любое движение происходит под действием различных сил.

Что такое сила?

Сила — это воздействие одного тела на другое. Воздействие может быть разным: в результате приложения силы тело способно приводиться в движение, менять скорость или направление движения, останавливаться и т.п. Например, толкая в магазине тележку для продуктов, ты приводишь ее в движение. При этом скорость тележки и направление ее движения меняются в зависимости от той силы, с которой ты действуешь на тележку. А твой папа может толкать такую тележку с гораздо большей скоростью, так как он сильнее тебя.

Под воздействием силы можно не только изменить скорость тела или его форму, но и направление его движения. Например, во время игры в теннис, бадминтон, бильярд при помощи ракетки или кия можно изменить направление движения шара. Шар или мяч может полететь в другом направлении не только после воздействия на него человека (при помощи ракетки, например), но и ударившись о любой предмет во время полета: стенку, забор, штангу и т.д. Приложение силы способно привести к изменению не только скорости, но и размеров или формы тела. Говоря другими словами, в результате приложения силы тело может деформироваться.

Пример: на рисунке ниже видно растяжение (удлинение) пружины после того, как на нее подвесили груз. Причем чем тяжелее груз и, соответственно, большая сила прилагается, тем сильнее растягивается пружина.

Что такое сила тяжести?

Сила тяжести — это сила, с которой Земля притягивает к себе тело. Эта сила всегда направлена вертикально вниз. Запомни: чем больше масса тела, тем больше сила тяжести, действующая на это тело. Именно поэтому нам трудно поднять или сдвинуть с места очень тяжелые предметы. И чем тяжелее предмет, тем больше сила тяжести и тем сложнее нам преодолеть эту силу. Сила тяжести, действующая на тело, несколько отдаленное от поверхности Земли, зависит от массы тела и расстояния.

«Космические» факты

Каждый космонавт переживает так называемую космическую болезнь: при отсутствии силы тяготения он привыкает к тому, что все окружающие предметы, да и он сам, летают, а не падают. Поэтому по возвращении на Землю космонавты в течение некоторого времени обращаются с вещами так, как привыкли это делать в космосе: просто отпускают их, при этом совершенно не задумываясь над тем, что они сразу упадут на землю или на пол.

В условиях невесомости в организме космонавта увеличивается объем циркулирующей крови, что, в свою очередь, может привести к повышению давления. Однако сердце космонавта очень интересно приспосабливается к данной ситуации: во избежание дополнительной нагрузки оно уменьшается в объеме и, соответственно, начинает перекачивать меньшее количество крови. Это своеобразная защитная реакция на увеличение объема крови.

Что такое сила всемирного тяготения?

Притяжение существует не только между Землей и всеми телами, находящимися на ней, но и всеми телами между собой. Такое притяжение всех тел в нашей Вселенной называется всемирным тяготением.

Ты когда-нибудь видел, как магнит притягивает к себе различные предметы? Так вот, всемирное тяготение можно сравнить с магнитом: тела притягиваются не только к Земле, но и друг к другу.

На какие тела действует сила всемирного тяготения?

Эта сила действует абсолютно на все тела, которые имеют какой-либо, пусть даже самый незначительный вес. Именно благодаря такому притяжению мы не улетаем в открытый космос вместе с другими окружающими нас предметами, а остаемся на Земле.

Если бы сила притяжения отсутствовала, то любое подброшенное тело никогда бы не вернулось на Землю.

Согласно легенде, английский ученый Исаак Ньютон открыл закон всемирного тяготения после того, как на его глазах с дерева оторвалось яблоко и упало на землю. Ньютон задумался над тем, почему оно упало вертикально вниз, перпендикулярно земле, а не в сторону. Позже гениальный ученый сумел доказать, что все тела притягиваются друг к другу.

Ускорение и сила всемирного тяготения

Ускорение — это изменение скорости в течение единицы времени. Представь, что с большой высоты на Землю падает какое-либо тело. Пока расстояние до Земли очень большое, ее сила притяжения не так велика. Но по мере приближения тела к поверхности Земли сила притяжения Земли возрастает, и ускорение движения тела становится равным 9,8 м/с 2 . Например, если ты бросишь яблоко с большой высоты, скажем, с пятого этажа, оно будет лететь со скоростью 9,8 м/с спустя 1 секунду падения и уже 19,6 м/с после второй секунды. То есть с каждой секундой падения его скорость будет увеличиваться почти на 10 м/с!

Ускорение и масса тела

Ускорение не зависит от массы падающего тела. Например, два тела, падающие с одинаковой высоты, достигнут земли одновременно, при этом не важно, что падает — яблоко или машина. Конечно, если ты бросишь листик бумаги и камешек, то камешек окажется на земле раньше, но только лишь потому, что листику мешает падать сопротивление воздуха. Но если предположить, что листик бумаги и камешек будут падать вниз внутри высокого стеклянного цилиндра, из которого откачан воздух, то оба предмета достигнут дна одновременно.

Вес тела

Да, не удивляйся, вес тела — это тоже сила, с которой тело давит на опору или какой-либо подвес (если тело висит).

Ты уже знаешь, что все тела притягиваются к Земле, и эта сила называется силой тяжести. Посмотри внимательно на картинку. В данном случае лавочка не позволяет мальчику и коту упасть, и именно лавочка испытывает действие силы, возникающей из-за притяжения Земли.

Какие есть сходства и различия между весом тела и силой тяжести?

Обе силы — и вес тела, и сила тяжести — возникают благодаря притяжению Земли.

Разница между весом тела и силой тяжести заключается в том, что вес действует на опору, которая находится под телом, а сила тяжести — на само тело.

Читайте также:  Эссе если человек зависит от природы то и она

Каким бы странным это ни показалось, но вес тела может быть равен нулю! Один из случаев, когда вес тела равен 0, — состояние невесомости. Например, в космическом корабле ни космонавт, ни тела, находящиеся на борту корабля, не оказывают никакого действия на опору. Они просто летают в пространстве.

Сила упругости

Сила упругости — это сила, которая возникает в теле в результате его деформации и стремится вернуть тело в исходное положение.

Самый простой и доступный пример проявления силы упругости — это деформация обычной пружины!

Возьми пружину, сожми ее, а затем убери пальцы. После того как ты отпустил ее, пружина стремится принять первоначальную форму. Так при деформации пружины возникла сила упругости, и ты можешь наблюдать ее проявление.

Давай рассмотрим интересный пример проявления силы упругости во время прыжка на тарзанке.

Какая сила растягивает канат во время прыжка?

Как только человек совершает прыжок, он начинает падать под действием силы тяжести. Под весом прыгуна канат растягивается, а затем стремится возвратиться в свое первоначальное положение, т.е. прыгун двигается вверх и вниз.

Сила трения

Тебе приходилось видеть, как кто-то нечаянно соскользнул со стула и упал на пол? Ты рассмеялся? А вот представь, что мы постоянно падаем со стульев и кроватей, а предметы не могут удержаться на месте и выскальзывают из рук. На самом деле не так и смешно, правда?

К счастью, благодаря силе трения этого не происходит. Если бы трение отсутствовало, то все предметы не могли бы держаться на поверхностях, а постоянно скатывались вниз, на землю.

Трение — это сила, возникающая при движении одного тела по поверхности другого.

Одной из причин, вызывающих трение, является шероховатость поверхностей соприкасающихся тел. Причем чем больше шероховатостей и неровностей, тем больше сила трения.

Различают несколько видов трения, из них основные: трение скольжения, качения и покоя.

Трение скольжения

В данном случае одно тело скользит по поверхности другого. Например: катание с горы на санках или лыжах, катание на коньках по льду.

Трение качения

Этот вид трения возникает, когда одно тело катится по поверхности другого. Это может быть любое колесо или тело в форме шара.

Трение покоя

В состоянии трения покоя тело может сдвинуться с места, но ему что-то мешает, и мешает ему именно сила трения. Например, в комнате стоит диван, и сдвинуть его с места можно только в случае приложения другой силы, которая будет больше силы трения покоя.

К чему приводит уменьшение силы трения?

Снижением силы трения и плохим контактом шин с асфальтом объясняется повышение количества аварий на мокрой дороге.

На мокром полу мы можем легко упасть.

Это происходит потому, что жидкость создает барьер между полом и подошвой обуви, при котором сцепление подошвы с полом значительно уменьшается, и, соответственно, уменьшается сила трения.

Источник



11 различных типов сил

В физике сила может быть определена как толчок или тяга на любой объект, который имеет массу. Это меняет движение объекта.

Другими словами, сила заставляет объект с массой изменить свое направление и скорость.

Два великих физика Исаак Ньютон и Галилео Галилей описали поведение сил математически. В 1638 году Галилей провел эксперимент на наклонной плоскости, который произвел революцию в способе измерения силы. Пять десятилетий спустя Ньютон разработал законы движения, которые заложили основу классической механики.

Поскольку сила имеет и величину, и направление, она является векторной величиной. Она представлена символом F и измеряется в единице СИ Ньютона (N).

Силы можно разделить на две группы в зависимости от их применения:

  1. Контактная сила: действует на тело напрямую или через среду.
  2. Бесконтактная сила: действует через пространства без прямого контакта с телом.

Чтобы лучше объяснить это явление, мы описали все различные типы сил на примерах. Давайте начнем с четырех фундаментальных сил в природе.

1. Гравитационная сила

Тип: бесконтактная сила

Гравитационная сила — это то, что притягивает два объекта с массой. Она действует на каждый объект, включая вас, во Вселенной.

Величина гравитационной силы, оказываемой объектами друг на друга, «прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними». Чем массивнее объекты и меньше расстояние между ними, тем выше сила.

Это самая слабая из четырех фундаментальных сил, обнаруженных в природе.

Хотя гравитационная сила не оказывает существенного влияния на субатомном масштабе, она является доминирующим взаимодействием на макроскопическом масштабе и существенно влияет на формирование, строение и траекторию небесных тел.

Пример: гравитация заставляет яблоко падать с дерева; она заставляет Луну вращаться вокруг Земли; она удерживает газы на Солнце.

2. Электромагнитная сила

Тип: Бесконтактная сила

Это вид взаимодействия, которое происходит между электрически заряженными частицами. Электромагнитные поля (создаваемые движущимися электрическими зарядами) несут в себе электромагнитную силу.

Электричество и магнетизм связаны друг с другом: текущие электроны создают магнетизм, а движущиеся магниты генерируют электричество. Отношения между ними очень хорошо объяснены Джеймсом Клерком Максвеллом и количественно определены в его уравнениях.

Пример: Наиболее распространенным примером электромагнетизма является свет, поскольку он распространяется (излучается) в пространстве, перенося энергию электромагнитного излучения.

Следующим наиболее распространенным примером могут быть силы, действующие между электрически заряженными атомными ядрами и электронами атомов.

3. Сильная ядерная сила

Тип: Бесконтактная сила

В ядерной физике и физике элементарных частиц сильное взаимодействие отвечает за структурную целостность атомных ядер. Поскольку все протоны имеют положительный заряд, они отталкиваются друг от друга. Сильное ядерное взаимодействие удерживает эти отталкивающие протоны вместе, так что они могут образовать атомное ядро.

Около 99% массы нейтрона или протона является результатом энергии сильного силового поля.

Это самая сильная сила в природе, действующая на расстоянии 1 фемтометра ( 10–15 м). Он почти в 137 раз сильнее электромагнетизма и в 100 миллиардов (10 38 ) раз сильнее, чем сила гравитации.

Пример: Сильная ядерная сила связывает кварки с адронными частицами, такими как протон и нейтрон, для создания атомного ядра. Это сила, которая соединяет обычную материю.

В более широком масштабе она используется на атомных электростанциях для производства тепла с целью выработки электроэнергии. Она также ответственна за огромную разрушительную мощь ядерного оружия. Из-за этой силы ядерное оружие при взрыве высвобождает экстремальное количество энергии.

Читайте также:  День природы в детском саду подготовительная группа

4. Слабая ядерная сила

Тип: Бесконтактная сила

В ядерной физике слабое взаимодействие относится к взаимодействию между субатомными частицами, которое вызывает радиоактивный распад атомов. Более конкретно, он отвечает за распад некоторых нуклонов на лептоны и другие типы адронов.

Его напряженность поля примерно в 10 13 раз меньше, чем у сильной ядерной силы. Тем не менее он значительно сильнее, чем гравитационная сила на коротких расстояниях.

Пример: Наиболее известным эффектом действия слабой силы является бета-распад (нейтронов) и связанная с ним радиоактивность. Она возникает в нескольких различных реакциях, включая сжигание Солнца и радиоуглеродное датирование.

Это четыре фундаментальные (бесконтактные) силы, из которых происходит все остальное. Они поддерживают горение звезд и вращение планет. Без них вселенная, которую мы знаем, не существовала бы, и даже если бы она существовала, это было бы совершенно другое место.

Теперь давайте перейдем к неосновным силам, которые возникают в результате прямого физического взаимодействия между двумя объектами.

Источник

Фундаментальные взаимодействия

От прогулки по улице, до запуска ракеты в космос, или прикрепления магнита на ваш холодильник, физические силы действуют всюду вокруг нас. Но все силы, которые мы переживаем каждый день (и многие из них мы не осознаем) могут быть сведены всего к четырём фундаментальным взаимодействиям:

  • гравитационному;
  • электромагнитному;
  • сильному;
  • слабому.

Они называются четыре фундаментальные силы природы, и они управляют всем, что происходит во всей Вселенной.

Гравитация

Гравитация это притяжение между двумя объектами, которые имеют массу или энергию, это видно, когда бросаешь камень с моста, когда планеты кружат по орбите вокруг звезды или когда Луна становится причиной приливов и отливов на Земле. Гравитация, возможно, самая подсознательно воспринимаемая и знакомая из фундаментальных сил, но она также является самой сложной для объяснения.

Исаак Ньютон был первым, кто предложил идею гравитации, предположительно его на это вдохновило яблоко, которое упало с дерева. Он описал гравитацию как постоянное притяжение между двумя объектами. Спустя века, Альберт Эйнштейн предложил свою теорию общей относительности, согласно которой гравитация это не притяжение, а сила. Массивный объект ведёт себя в пространстве-времени, немного похоже на то, как большой мяч расположенный посреди листа влияет на материю, деформируя её и заставляя другие, меньшие, объекты на листе двигаться к центру.

Гравитацией удерживаются вместе планеты, звёзды и даже галактики, она оказывается самой слабой из фундаментальных сил, особенно на молекулярных и атомарных уровнях. Подумай об этом: Насколько тяжело поднять мяч с земли? Или поднять твою ступню? Или прыгнуть? Все эти действия противодействуют гравитации всей Земли. А на молекулярном и атомарном уровнях, гравитация почти не имеет никакого влияния в сравнении с другими фундаментальными силами.

Электромагнетизм

Электромагнитное взаимодействие также называется силой Лоренца и действует между заряжёнными частицами. Противоположные заряды притягивают друг друга, в то время как одинаковые заряды отталкиваются. Чем больше заряд, тем сильнее сила. Точно так же, как и гравитация, эта сила может чувствоваться с бесконечного расстояния (хотя сила будет очень, очень мала на таком расстоянии).

Как указывает её название, электромагнитная сила состоит из двух частей электрической силы и магнитной силы. Сначала физики описывали эти силы как отдельные друг от друга, но позже исследователи осознали, что они являются компонентами одной и той же силы.

Электрический компонент действует между заряжёнными частицами двигаются ли они или нет, создавая поле, которым заряды могут влиять друг на друга. Но если их привести в движение эти заряжённые частицы начинают демонстрировать второй компонент, магнитную силу. Частицы создают магнитное поле вокруг них в то время, когда они движутся. Таким образом, когда электроны спешат по проводам, чтобы зарядить ваш компьютер или телефон, или включить ваш телевизор, вокруг провода образуется магнитное поле.

Электромагнитные силы передаются между заряжёнными частицами в результате обмена невесомыми, несущими силу бозонами, которые называются фотоны. Несущие силу фотоны, которые меняются местами с заряжёнными частицами, в то же время являются другой формой фотонов.

Электромагнитные силы ответственны за некоторые из самых часто наблюдаемых явлений: трение, упругость, нормальная сила и сила удержания твёрдых тел в заданной форме. Они также ответственны за притяжение, которое испытывают птицы, самолеты и даже Супермен, во время полёта. Это становится возможным благодаря тому, что заряжённые (нейтральные) частицы взаимодействуют друг с другом. Нормальная сила, которая держит книгу на крышке стола, например, является последствием отталкивания электронов атомов стола и электронов атомов книжки.

Сильное взаимодействие

Сильная ядерная сила, также называется сильное ядерное взаимодействие, это самая сильная фундаментальная сила природы. Она в шесть тысяч квинтильонов квинтильонов квинтильонов (это 39 нолей после 6!) раз сильнее чем сила гравитации. И поэтому она в состоянии связать вместе фундаментальные частицы вещества, чтобы сформировать большие частицы. Она держит вместе кварки, которые составляют протоны и нейтроны, и часть сильного взаимодействия также держит вместе протоны и нейтроны атомного ядра.

Сильное взаимодействие работает только тогда, когда субатомные частицы находятся очень близко друг к другу. Они должны быть где-то на расстоянии 10 -15 метров друг от друга, или, грубо говоря, на расстоянии диаметра протона.

Хотя, сильное взаимодействие является нерегулярным, потому что, в отличие от любой другой фундаментальной силы, оно становится слабее, когда между субатомными частицами уменьшается расстояние. Фактически она достигает максимальной силы, когда частицы находятся дальше всего друг от друга. Крошечная частица сильного взаимодействия, называемая остаточным сильным взаимодействием, действует между протонами и нейтронами. Протоны в ядрах отталкивают друг друга потому что они имеют одинаковый заряд, но остаточное сильное взаимодействие может побороть это отталкивание, таким образом частицы остаются связанными в aтомных ядрах.

Слабое взаимодействие

Слабая сила, также называется слабым ядерным взаимодействием, ответственна за распад частиц. Это постоянное изменение одного типа субатомных частиц в другие. Таким образом, например, нейтрино который случайно пройдёт близко возле нейтрона может превратить нейтрон в протон, в то время, как нейтрино станет электроном.

Читайте также:  Значение полуобезьян в природе и жизни человека

Физики описывают это взаимодействие через обмен несущими силу частицами, которые называют бозонами. Специфические виды бозонов ответственны за слабое, электромагнитное и сильное взаимодействия. В случае слабого взаимодействия, бозоны – это заряжённые частицы, которые называются бозоны W и Z. Когда субатомные частицы такие как протоны, нейтроны и электроны подходят на расстояние 10 -18 метров или 0,1% диаметра протона, один к другому, они могут обменяться своими бозонами.

Слабое взаимодействие критично для реакции ядерного слияния, которая даёт энергию Солнцу и производит энергию, которая требуется для большинства форм жизни здесь на Земле. Именно поэтому археологи могут использовать, радиоактивный углерод, чтобы датировать древние кости, дерево и другие артефакты. Радиоактивный углерод имеет шесть протонов и восемь нейтронов, один из этих нейтронов распадается в протон, чтобы создать радиоактивный азот, который имеет семь протонов и семь нейтронов. Этот распад происходит прогнозируемо, что позволяет учёным определять насколько старым является такой артефакт.

Единая теория фундаментальных взаимодействий

Главный вопрос четырёх фундаментальных взаимодействий заключается в том являются ли они в действительности проявлением единой большой силы Вселенной или нет. Если да, каждая из них должна быть в состоянии объединяться с другими, и уже есть некоторые доказательства.

Физики Шелдон Глашоу и Стивен Вайнберг из Гарвардского университета с Абдусом Салам с Империального колледжа в Лондоне выиграли Нобелевскую премию по физике в 1979 за объединение электромагнитной и слабой сил в результате чего появилась электрослабое взаимодействие. Физики также пытались объединить электрослабую силу с сильным взаимодействием,. Окончательный кусочек пазла будет требовать объединения гравитации с электросильной силой, чтобы развить, так называемую теорию всего, теоретическую систему взглядов, которая могла бы объяснить всю Вселенную.

Физикам довольно сложно совместить микромир с макромиром. На больших и в особенности астрономических шкалах, гравитация доминирует и лучше всего описывается теорией общей относительности Эйнштейна. Но на молекулярных, атомных и субатомных шкалах доминирует квантовая механика. На данный момент никому ещё не удалось найти хороший способ объединить эти два мира.

Физики, изучающие квантовую гравитацию, имеют своей целью описать силу в условиях квантового мира, что могло бы помочь с объединением. Фундаментальным для этого подхода было бы открытие гравитонов, теоретических, несущих силу бозонов гравитационной силы. Гравитация – это единственная фундаментальная сила, которую физики могут сейчас описать, не используя частицы, которые несут силу. Но, потому что описания всех других фундаментальных сил требует частиц, которые несут силу, учёные ожидают, что гравитоны должны существовать на субатомном уровне – исследователи эти частички просто пока не нашли.

Чтобы ещё больше всё усложнить можно вспомнить о невидимом царстве тёмной материи и тёмной энергии. Неясно состоят ли тёмная материя и энергия из одной частицы или всего набора частиц, которые имеют их собственные силы и носители бозоны.

Первичные носители-частицы, которые представляют интерес – это теоретический тёмный фотон, который передавал бы взаимодействия между видимой и невидимой материей. Если тёмные фотоны существуют, они могли бы привести к открытию пятой фундаментальной силы. Пока, однако, нет доказательств того, что тёмные фотоны существуют и некоторые исследования предоставили сильные доказательства, что эти частички не существуют.

Источник

Виды сил вокруг нас

В окружающем нас мире бесчисленное множество тел, которые взаимодействуют друг с другом. Но, несмотря на это многообразие сил, несколько их видов принято выделять особо.

Силой упругости называют силу, которая возникает в теле при изменении его формы или размеров. Это происходит, если тело сжимают, растягивают, изгибают или скручивают. Например, сила упругости возникла в пружине в результате её сжатия и действует на кирпич.

Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. В нашем примере упавший кирпич сжал пружину, то есть подействовал на неё с силой, направленной вниз. В результате в пружине возникла сила упругости, направленная в противоположную сторону, то есть вверх. Мы можем это утверждать, наблюдая отскок кирпича.

Силой тяготения называют силу, с которой все тела в мире притягиваются друг к другу (см. § 2-а). Разновидностью силы тяготения является сила тяжести – сила, с которой тело, находящееся вблизи какой-либо планеты, притягивается к ней. Например, на ракету, стоящую на Марсе, тоже действует сила тяжести.

Сила тяжести всегда направлена к центру планеты. На рисунке показано, что Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты. Как видите, направление «вниз» различно для различных мест на планете. Это будет справедливо и для других планет и космических тел. Более подробно силу тяжести мы изучим в § 3-г.

Силой трения называют силу, препятствующую проскальзыванию одного тела по поверхности другого. Рассмотрим рисунок. Резкое торможение автомобиля всегда сопровождается «визгом тормозов». Этот звук возникает из-за проскальзывания шин по асфальту. При этом шины сильно стираются, так как между колёсами и дорогой действует сила трения, препятствующая проскальзыванию.

Сила трения всегда направлена противоположно направлению (возможного) проскальзывания рассматриваемого тела по поверхности другого. Например, при резком торможении автомобиля его колёса проскальзывают вперёд, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.

Сила трения возникает не только при скольжении одного тела по поверхности другого. Существует также сила трения покоя. Например, отталкиваясь ботинком от дороги, мы не наблюдаем его проскальзывания. При этом возникает сила трения покоя, благодаря которой мы движемся вперёд. В отсутствие этой силы мы бы не смогли сделать и шага, как, например, на льду.

Силой Архимеда (или выталкивающей силой) называют силу, с которой жидкость или газ действуют на погруженное в них тело – выталкивают его. На рисунке показано, что вода действует на пузырьки выдыхаемого рыбой воздуха – выталкивает их на поверхность. Вода также действует на рыбу и камни – она уменьшает их вес (силу, с которой камни давят на дно).

Архимедова сила обычно направлена вверх, противоположно силе тяжести. Более подробно она будет изучена в § 3-е.

Источник