Какие есть электрические явления в природе

Электрические явления в природе и технике

Вокруг нас происходит множество электрических явлений. Рассмотрим некоторые из них.

ЭЛЕКТРИЧЕСКАЯ ПРИРОДА МОЛНИИ

Наиболее яркое электрическое атмосферное явление — молния. Происхождение молнии объясняют следующим образом. Облака под действием ветра с большой скоростью проносятся над землёй и электризуются. При этом верхние и нижние слои облаков приобретают разноимённые заряды. Вокруг этих облаков возникает сильное электрическое поле. На ближайших к ним телах образуется электрический заряд противоположного знака. Такими телами могут являться другие облака, а также поверхность земли с находящимися на ней высокими телами.

Иногда два наэлектризованных облака приближаются друг к другу на достаточно близкое расстояние. Если при этом положительно заряженный слой облака приближается к отрицательно заряженному слою другого облака, то между ними происходит разряд — молния а, которая сопровождается громом.

Когда грозовая туча имеет отрицательный электрический заряд и проходит близко к поверхности земли, то создаваемое этим электрическим зарядом поле приводит к появлению в предметах на земле положительного электрического заряда. Между тучей и заряженными предметами может произойти разряд б.

Электрические явления в природе и технике

Молния и гром происходят одновременно, но свет распространяется со скоростью 300 000 км/с, а скорость звука в воздухе 340 м/с. Поэтому мы сначала видим разряд — молнию, а звук разряда — гром — слышим спустя некоторое время. Зная время запаздывания грома, можно оценить, как далеко от наблюдателя произошёл разряд.

На земном шаре одновременно происходит до 1800 гроз. В умеренных широтах грозы в среднем бывают 10—15 раз в год, у экватора на суше от 80 до 160 грозовых дней в году, над океаном грозы случаются реже, а в Арктике — одна в несколько лет.

Электрическая природа молнии была впервые раскрыта в 1752 г. американским учёным Бенджамином Франклином. Во время грозы он запустил в облака воздушного змея. Как только верёвка, на которой был привязан змей, намокла от дождя, её растрепавшиеся волокна внезапно встали дыбом, указывая на то, что змей и нить зарядились. Находясь под навесом и придерживая нить, на которой был подвешен змей, Франклин осуществил опыт, который мог оказаться для учёного смертельным. Он приблизил палец к металлическому ключу, привязанному на мокром шнуре. Но ещё до того, как он коснулся пальцем ключа, из ключа в палец проскочили искры, произведя при этом треск.

Подобные опыты чрезвычайно опасны. Некоторые исследователи погибли во время таких экспериментов.

ГРОМООТВОД

Во время своих опытов Франклин обнаружил, что металлическое остриё, соединенное с землёй, снимает электрические разряды с заряженных тел. Сконструированный им молниеотвод, или громоотвод, как его сейчас называют, был первым научно обоснованным устройством для защиты от молний.

Простейший громоотвод представляет собой заострённый металлический стержень, прикреплённый к зданию и поднятый над крышей. Он соединяется со всеми металлическими частями здания и с массивной металлической плитой, зарытой в землю, чем обеспечивается заземление громоотвода.

При разряде заряд по громоотводу уходит в землю и не приносит никакого вреда. Кроме того, наведённый тучей на здание электрический заряд уходит с громоотвода в землю, тем самым не только предохраняя здание от удара молнии, но и уменьшая вероятность её удара в данное здание.

В течение сотен лет моряки замечали, что во время гроз на верхушках корабельных мачт появляются странные огни, которые получили название огней святого Эльма. Моряки думали, что этими огнями их покровитель святой Эльм показывает, что они находятся под его опекой. Огни святого Эльма можно также наблюдать во время грозы на верхушках высоких зданий, на кончиках лопастей пропеллеров самолётов и т. п. Это явление наблюдается, когда в остроконечных частях предметов появляется большой электрический заряд.

Молния чаще всего ударяет в возвышающиеся над уровнем земли объекты — колокольни, флагштоки, небоскрёбы, а также в одиночные деревья в полях и вершины холмов. Если молния попадает в металл, она его плавит. Попадая в песок, молния плавит и его. Попав в дерево, молния расщепляет его, обугливает, а может и поджечь. Поэтому во время грозы нельзя прятаться от дождя под высокими деревьями. Попав в строения, молния также может разрушить их и поджечь.

ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В БЫТУ И ТЕХНИКЕ

Электризация часто наблюдается и в быту. Разряды электричества возникают при ходьбе человека по полимерным покрытиям, синтетическим коврам, при снятии синтетической одежды, при расчёсывании волос пластмассовой расчёской и т. д.

В домашних условиях устранить заряды статического электричества можно, увлажняя воздух или используя антистатические препараты. На производстве человек также сталкивается с проблемой самопроизвольной электризации.

При трении о воздух электризуется самолёт, поэтому после посадки к нему нельзя сразу приставлять металлический трап: возникнет электрический разряд, который может вызвать пожар.

После посадки самолёт сначала «разряжают»: опускают на землю соединённый с обшивкой самолёта металлический трос, по которому заряд уходит в землю.

Вы смотрели Конспект по физике для 8 класса «Электрические явления в природе и технике».

Источник



Топ-10: Странные электрические феномены, встречающиеся в природе

Электричество относительно недавно было взято человеком на вооружение, но помимо искусственного происхождения довольно часто можно встретить удивительные феномены возникновения электрических разрядов на лоне природы. Благодаря этим явлениям было совершено множество удивительных и ошеломляющих открытий, а также разрушено огромное число мифов и легенд.

10. Уистлерс

Это электромагнитное явление производит звуки, которые очень похожи на пение птиц ранним утром вперемешку со звучанием, похожим на космическую рок-группу Hawkwind. Формирующиеся в верхних слоях атмосферы во время разрядов молний, они могут быть записаны обычным оборудованием, которое найдется у всех радиолюбителей. Многие «охотники за свистом» путешествуют на огромные расстояния, стараясь найти места, где отсутствуют линии электропередач и прочие электропомехи, чтобы получить как можно более чистую звукозапись. Многие группы, такие как Pink Floyd, использовали подобные записи в своих треках, поскольку такой звуковой ряд крайне трудно воссоздать при помощи обычных инструментов.

9. Молнии Кататумбо

Молнии Кататумбо, также известные как «вечная буря», — это явление, которое представляет собой бесконечную грозу. Местонахождение этого поразительного природного феномена — устье реки Кататумбо в Венесуэле. Эти непрерывно бьющие молнии были источником многочисленных мифов и легенд, передаваемых из поколения в поколение местным населением. Все дело в том, что взрывоопасный метан, выделяющийся из близлежащего болота в сочетании с ветрами, дующими с Анд, создает крайне нестабильную среду, способствующую возникновению беспрерывных электрических разрядов. Гроза обычно начинается с наступлением сумерек и длится порядка 10 часов. Количество ударов молний может достигать 20 000 за ночь. Это явление настолько интенсивно, что считается одним из самых эффективных процессов по регенерации озонового слоя планеты. В связи с этим оно было внесено в список Всемирного наследия ЮНЕСКО. Сами молнии обычно красно-оранжевого цвета и в ясные ночи могут наблюдаться со всего Карибского моря. Довольно странный инцидент произошел в 2010 году, когда грозы прекратились на два месяца, но по прошествии этого срока все стало по прежнему.

Источник

Электрические явления в природе

Электромагнетизм играет очень важную роль в физике космоса, так как в нем есть масса магнитных полей, влияющих на перемещение зарядов. В определённых условиях электромагнетизм намного сильнее гравитации. Первым примером использования электромагнетизма для перемещения информации на расстояние был телеграф, созданный в XIX веке. Суть телеграфии состоит в том, что любая информация, будь то цифры или буквы, передаётся посредством закодированных знаков.

За годы изучения электромагнитных явлений ученые выявили ряд определенных закономерностей, что их характеризуют. Данные закономерности отличаются от тех, которые характеризует механику. В электронике электромагнетизм описывается сложными взаимодействиями величин, которые описываются временем и координатами в пространстве. Исследуя сложные электронные приспособления, ученые сталкиваются с обширными описаниями.

Читайте также:  Съемка большой семьи на природе

Электромагнетизм рассматривался не автономно. В процессе исследований учёные пришли к тому, что он связан с механикой. Их комплексное изучение вылилось в теорию относительности, где четырехмерное пространство со временем было представлено как единое многообразие, а разделение времени и пространства было условным.

Основной особенностью электромагнитных явлений является изменение параметров образцов, начиная от полностью ферромагнитных и заканчивая вовсе немагнитными.

Не нашли что искали?

Просто напиши и мы поможем

Электромагнитные явления изучались достаточно длительный период. Для формирования верного материалистического понимания данных процессов, стоит опираться на отечественную литературу по физике. При изучении электромагнетизма стало понятным, что пространство, окружающее проводник с электрическим током, представлено магнитным полем. То есть, там, где имеет место электрический ток, непременно будет существовать магнитное поле.

Электромагнитная теория начала развиваться благодаря таким ученым, как Фарадей и Максвелл. Они вывели основополагающие понятия данной теории. Фарадей открыл явление электромагнитной индукции, на основании которой Максвелл сформулировал теорию электромагнитного поля.

Он проводил опыты с магнитной стрелкой, помещённой возле заряженного проводника, в результате которых сделал вывод, что на магнитную стрелку действует особое состояние окружающей среды, но не конкретно перемещаемые по проводнику заряды. После чего было введено понятие магнитного поля, представленного совокупностью магнитных линий, пронизывающих окружающее пространство и способных индуцировать электрический ток.

Теория электромагнитного поля Максвелла о том, что изменяющееся магнитное поле способствует формированию вихревого электрического поля как в проводниках, так и в вакууме. Данная теория открыла новый этап в развитии физики. Согласно ей весь мир представляет собой электродинамическую систему, состоящую из зарядов, взаимодействующих между собой посредством электромагнитного поля.

При относительном движении электрических зарядов генерируется магнитная сила. Соединение магнитной и электрической сил представляет собой электромагнитную силу. Электрические силы имеют место как при движущихся, так и при покоящихся зарядах, в то время, как магнитные силы имеют место только при перемещении зарядов.

Поведение зарядов и электромагнитных сил Максвелл описал в своих четырех уравнениях, которые впоследствии стали основными уравнениями классической электродинамики.

Данные уравнения также стали основой закона Кулона, аналогичного закону всемирного тяготения Ньютона, и выглядит следующим образом:

Для сравнения, закон всемирного тяготения Ньютона имеет следующий вид:

Согласно закону Кулона справедливы такие положения:

  • у магнитных силовых линий нет ни начала, ни конца, они являются непрерывными;
  • магнитные заряды – это понятие условное, на самом деле их нет;
  • электрическое поле создается электрическими зарядами и переменным магнитным полем;
  • магнитное поле может быть сформировано как переменным электрическим полем, так электрическим током.

С открытием электромагнетизма было полностью изменено представление о материи.

Источник

10 необычных электрических явлений, существующих в природе

Электричество, которым человечество научилось управлять сравнительно недавно, можно наблюдать в природе, причём в самых разнообразных и удивительных формах.

1. Вистлеры (свистовые волны)

Вистлеры ещё называют свистящими атмосфериками или электромагнитным хором рассвета за то, что звуки, которые они производят, напоминают пение птиц ранним утром. Это почти неземные звуки, образующиеся в верхних слоях атмосферы при разрядах молний, причём их можно записать даже на простейшем радиооборудовании. Существует даже такое понятие как «охотники за вистлерами», обозначающее радиолюбителей, путешествующих на дальние расстояния в районы с минимальным наличием линий электропередач и других электромагнитных помех для того, чтобы сделать чистые звуковые записи.

2. Молнии Кататумбо

Молнии Кататумбо являются самым длительным грозовым явлением на Земле. Они зафиксированы в устье реки Кататумбо (Венесуэла), а их многочасовое свечение породило немало легенд и мифов среди коренного населения. Пары метана из местных болот в сочетании с ветром со стороны Анд поднимаются в атмосферу и фактически провоцируют непрерывные удары молний. Интенсивный гром с молниями начинается сразу после наступления сумерек и продолжается около 10 часов. Сами молнии красно-оранжевого цвета можно увидеть в ясные ночи из многих стран Карибского бассейна. Это явление настолько уникально, что его собираются включить в список Всемирного наследия ЮНЕСКО.

3. Грязные грозы

«Грязная гроза» – это мощное электрическое грозовое явление, формирующееся в шлейфе вулканического извержения. Что именно порождает эти массивные электрические разряды пока неизвестно, учёные предполагают, что частицы льда и пыли трутся друг о друга и вырабатывают статическое электричество, что и вызывает эти удивительные молнии необычного цвета. В течение 2011 года массовые грязные грозы наблюдались в Чили. Температура и плотность фонтанов пепла без присутствия воды, которая могла бы объяснить формирование молнии, по-прежнему делает это явление неразгаданной природной тайной.

4. Визуальный феномен космических лучей

Космические лучи зарождаются в глубоком космосе, они путешествуют в течение миллионов лет и, в конце концов, попадают на нашу планету. Эти лучи поглощаются нашей атмосферой, потому для нас они невидимы. Зато космонавты видят их даже с закрытыми глазами. Лучи воздействует иначе, чем земной свет. Космонавты миссии «Аполлон 11» описывали их как пятна и полосы, возникающие каждые три минуты. Хотя этот визуальный феномен полностью не изучен учёными, уже известно, что космические лучи движутся на высоких скоростях и проходят через космические корабли и через сетчатку глаз космонавтов.

5. Триболюминесценция

Триболюминесценции – световое явление, излучаемое из кристаллического вещества при его разрушении. На сегодняшний день считается, что через это вещество проходит электрический ток и заставляет молекулы газа, находящиеся внутри кристалла, светиться. Практическое современное использование триболюминесценции включает в себя обнаружение трещин внутри зданий, а также внутри космических аппаратов, плотин и мостов. Когда наши предки обнаружили этот источник, они приписали ему божественное происхождение. Индейские шаманы наполняли церемониальные трещотки кварцевыми кристаллами, которые светились при тряске, что придавало особую атмосферу проводимым ритуалам. Кстати, вы можете пронаблюдать этот свет в домашних условиях. Положите кусочки сахара на ровную поверхность в темном помещении и раздавите их стеклянным стаканом, чтобы увидеть синеватые вспышки света.

6. Сонолюминесценция

Сонолюминесценция, то есть выработка света звуковыми волнами, была обнаружена в 1930-е годы. Ученые впервые столкнулись с загадочными огнями, исследуя морские гидролокаторы. Когда звуковые волны проходили через воду, появлялось синее мерцание и вспышки света. Мелкие пузырьки в воде расширялись и быстро сжимались, возникало высокое давление и температура, хлопок, выработка энергии, а затем излучение света. Иными словами, звук превращался в свет. Кстати, механизм этого явления по сей день не является полностью изученным.

7. Спрайты

Спрайты – это мощные, яркие вспышки обычно красного цвета, возникающие высоко в атмосфере, выше грозовых туч, на высоте от 80 км. В диаметре они могут быть от 50 км и более. Ранее считалось, что спрайты – это разновидность молнии, но впоследствии было установлено, что это скорее определённый тип плазмы. Спрайты напоминают большую красную медузу с длинными синими щупальцами. Их сложно сфотографировать с земли, но есть много снимков, сделанных с самолетов.

8. Шаровая молния

Оказывается, что шаровые молнии как явление стали восприниматься всерьез только в 60-х годах, хотя их появление фиксировалось постоянно в течение многих столетий. Эти странные шары могут различаться по размерам: от горошины до небольшого автобуса. Трещащие, шипящие, яркие шары возникают во время грозы, в некоторых случаях они могут спонтанно и громко взрываться. Одна из самых странных тайн шаровой молнии – это её «разумное» поведение. Она влетает в здания через дверные проемы или окна и путешествует по комнатам, огибая столы, стулья и прочие предметы. Происхождение шаровых молний до сих пор тщательно изучается, но к единому мнению учёные так ещё и не пришли.

Читайте также:  Что есть в природе и создано человеком одно название

9. Огни святого Эльма

Еще во времена Колумба Огни святого Эльма считались сверхъестественным явлением. Моряки часто рассказывали о ярко-синем или фиолетовом свечении вокруг корабля. Свечение напоминало мерцающие на ветру языки пламени вокруг мачт. Внезапное появление Огней святого Эльма считалось добрым предзнаменованием, поскольку странный пучкообразный свет возникал перед окончанием мощных штормов. Наука имеет своё объяснение этому странному свечению. Разница в напряжении между воздушной атмосферой и морем вызывает ионизацию газов, которые начинают светиться. Кстати, Огни святого Эльма были также замечены на церковных шпилях, крыльях самолетов и даже рогах крупного скота.

10. Северное сияние

Полярные (северные) сияния – это изумительные световые явления, возникающие в ночном небе. Аврора Бореалис в северном полушарии и Аврора Австралис в южном полушарии получили свои имена от римской богини рассвета. Они выглядят как волнистая, светящаяся завеса зелёного цвета, хотя были также зафиксированы сияния красного, розового, желтого и изредка синего цветов. Причина земных Аврор заключается в том, что заряжённые частицы, высвобождаемые из атмосферы Солнца, сталкиваются с частицами газа в атмосфере Земли, и в результате мы становимся свидетелями впечатляющего природного светового шоу.

Источник

10 необычных электрических явлений, существующих в природе

Первыми объек­тами, свидетельствующими о наличии элект­рическихявлений в живой природе, были рыбы. Жители Южной Америки давно подметили, что некоторые рыбы способны наносить парализующие удары. Такими способностями обладают электрические угри, нильский электрический сом, скаты. Еще древние римляне знали, как элек­трические скаты добывают себе пищу: они не гоняются за добычей, не сидят в засаде, но у крабов или осьминогов, оказавшихся рядом со спокойно плывущими в воде скатами, на­чинаются конвульсии, и они гибнут от элект­рического разряда.

Почти слепой электрический угорь ориентируется и распознает предметы, испуская слабые разряды – примерно один в минуту, — создающие на короткое время электрическое поле вокруг всего его тела. Если в это поле попадает какой-нибудь объект или потенциальная жертва, рыба сразу настораживается и либо огибает препятствие , либо спешит к добыче. Электрический угорь из Амазонии – пресноводная рыба из Южной Америки. В отличие от своих мелких сородичей он достигает 2, 5 м в длину, причем четыре пятых тела приходится на электрические органы. Это одно из немногих животных , убивающих током. Он генерирует напряжение до 600 вольт , которое способно свалить с ног лошадь. Свое длинное тело он может плавно провести под корягой или среди камней, ни разу не коснувшись их.

Удивительными электрическими свойствами обладает клюв утконоса, обитателя австралийских рек. Клюв утконоса помогает животному находить корм, плавая под водой с закрытыми глазами, ушами и ноздрями. Широкий кожистый клюв этого необычного млекопитающего покрыт тысячами крошечных пор с рецепторами, они воспринимают слабые электрические поля, создаваемые мышечными сокращениями их жертвы. Водя своим чувствительным клювом по дну, утконос удовлетворяет ненасытный аппетит: ежедневно он съедает почти столько пищи, сколько весит сам. Он ощущает и более слабые электрические поля, создаваемые движениями воды через препятствия вроде камней и бревен. Это помогает утконосу ориентироваться.

Электрические явления в неживой природе

С давних пор человек наблюдал грозу, молнию, «огни святого Эльма, северное сияние. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Молнии — серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах т.к. электрический ток идет по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн расположенных на крышах высотных зданий, а также для сетевого оборудования.

Наша планета полна загадок и необычных явлений. Издавна люди интересовались таким специфическим свечением, которое получило название «Огни Святого Эльма». Оно возникает на шпилях зданий и разнообразных заостренных предметах во время снеговых бурь, гроз и торнадо.

В средние века люди не находили научного объяснения этому явлению и считали такой огонек знамением от Высших Сил. Однако сегодня физики доступно объясняют этот удивительный процесс. Оказывается, когда приближается гроза, то на земле накапливается огромное количество электричества. Учитывая тот факт, что воздух заряжен положительными частицами, а земля – отрицательными, то в средних слоях атмосферы при соприкосновении частиц возникает электрический разряд. Огни Святого Эльма представляют собой яркие кратковременные вспышки, искры или бело-голубые огоньки, похожие на факел. Их возникновение сопровождается специфическими звуковыми эффектами: шипением, потрескиванием.

Задания I группе.

Приведите примеры электрических явлений в живой природе.
Расскажите об одном явлении в живой природе.
Приведите примеры электрических явлений в неживой природе.
Какие приборы используют для защиты зданий от молнии?
Вас застала гроза, когда вы прогуливались со своей собачкой, ведя ее на тонкой цепочке. Ваши действия по спасению себя и собаки от молнии.
Сделайте коллаж «Электрические явления в природе»

Задания
IIгруппе. Электрические явления в технике
Электрические явления в технике

Устройство лазерного принтера основано на электрических явлениях . Когда принтер получает задание для печати, изображение с помощью лазера «рисуется» в виде положительно заряженных точек. Затем из контейнера на барабан сыплется очень мелкая сухая краска , которая прилипает только в тех местах, где есть положительно заряженные точки. С помощью специального механизма к барабану подаётся бумага, приобретая по пути отрицательный заряд. Бумага соприкасается с фотобарабаном, частицы положительно зарядившейся краски притягиваются к отрицательно заряженному листу, на котором остаётся отпечаток. Затем бумага проходит по горячему ролику, где частицы краски «вплавляются» в бумагу.

На современных автомобильных заводах кузова автомобилей окрашиваются в специальных камерах, где краска распыляется и одновременно электрически заряжается отрицательно, а затем оседает на кузове, заряженном положительно. Таким образом, процесс покраски автоматизируется, и достигается высокая равномерность окраски.

Аналогично процессу покраски автомобилей в пищевой промышленности коптят рыбу. Копчение – это процесс пропитывания продуктов дымом. Частицы дыма заряжают положительно, и они равномерно оседают на отрицательно заряженной тушке рыбы или мяса, поэтому процесс копчения происходит быстрее и качественнее.

Чтобы получить в электрическом поле слой ворса на каком-либо материале, надо материал заземлить, поверхность покрыть клеящим веществом, а затем через заряженную металлическую сетку, расположенную над этой поверхностью, пропустить порцию ворса. Ворсинки быстро ориентируются в поле и, распределяясь равномерно, оседают на клей строго перпендикулярно поверхности. Так получают покрытия, похожие на замшу или бархат. Легко получить разноцветный узор, заготовив порции разного по цвету ворса. Так можно сделать многоцветные ковры.

Если мелкие частицы одного вещества зарядить положительно, а другого — отрицательно, то легко получить их смесь, где частицы распределены равномерно. Например, на хлебозаводе теперь не приходится совершать большую механическую работу, чтобы замесить тесто. Заряженные положительно крупинки муки воздушным потоком подаются в камеру, где они встречаются с отрицательно заряженными капельками воды, содержащей дрожжи. Крупинки муки и капельки воды образуют однородное тесто.

Читайте также:  Узоры которые создала природа изо 1 класс презентация

Можно привести много других примеров полезного применения статической электризации. Основанная на этом явлении технология удобна: потоком заряженных частиц можно управлять, изменяя электрическое поле, а весь процесс легко автоматизировать.

В ситуациях, когда происходит трение соприкасающихся поверхностей, может наблюдаться явление электризации. Это очень опасно на некоторых производствах (например, мукомольные, текстильные и химические заводы), а также при изготовлении электронных приборов.

Например, кожаные или резиновые ремни, передающие вращение на мельницах электризуются, и возникающий при этом искровой разряд может вызвать взрыв мучной пыли. Во время работы ткацкого станка волокна ткани от трения приобретают разноимённые заряды, это приводит к их взаимному отталкиванию (они начинают «топорщиться»), что значительно затрудняет работу на станке. Кроме того, наэлектризованная ткань притягивает частицы пыли из воздуха, поэтому ткань в процессе выработки сильно загрязняется.

Во время сбора электронных приборов некоторые элементы, чувствительные к статическому электричеству (например, микросхемы), могут быть повреждены. Поэтому сотрудники, занимающиеся монтажом электронных микросхем, обязаны одевать специальные браслеты с проводом, подключаемым к заземлению.
Во время полёта из-за трения о воздух электризуются самолёты. Поэтому после посадки нельзя сразу же к самолёту приставлять металлический трап: может возникнуть электрическая искра и, как следствие, пожар. Сначала самолёт разряжают: опускают с него на землю металлический трос, соединённый с корпусом самолёта, и электрические заряды уходят в землю.

Похожие меры предосторожности используются и в автомобилях: к корпусу бензовоза прикрепляется металлическая цепь, которая волочится по земле, отводя в неё накапливающиеся заряды. При сливе топлива или заправке любой бензовоз обязательно подключают к заземлению металлическим тросом.

Чтобы нейтрализовать вредное действие статического электричества: на производстве заземляют станки и машины, увлажняют воздух, используют специальные нейтрализаторы зарядов; дома увлажняют помещения, используют специальные добавки к воде при мытье полов, антистатик для одежды.

Задания II группе.

Приведите примеры электрических явлений в технике?
Расскажите об одном явлении?
Какую пользу приносят электрические явления?
Наносят ли вред электрические явления технике? Приведите примеры.
Как можно нейтрализовать вредное воздействие статического электричества?
Почему при электромонтажных работах, производимых под напряжением необходимо иметь обувь на резиновой подошве?
Сделайте коллаж «Электрические явления в технике»

Введение

Что такое утюг? Самое точное определение – это то, чем мы гладим одежду. То есть мы почти всегда определяем объект через его свойства. Похожая ситуация у нас уже возникала: мы не могли точно сформулировать, что такое энергия, но описывали ее через свойство: энергия – это то, что сохраняется в замкнутой системе. Такие понятия, как «тело», «координата», «время», мы считаем базовыми, то есть не требующими точного определения (как точка или прямая в математике). Сложно строго сформулировать, что они значат, мы считаем их общеизвестными, общепонятными и через них определяем все остальные. Если каждое понятие определять через предыдущие, то рано или поздно придется остановиться и признать, что «предыдущих» не осталось.Сегодня мы познакомимся с еще одним таким базовым физическим понятием, которое называется «заряд». Мы опишем свойства заряда и заряженных тел, которые и будем использовать в практических целях.

Опасность процесса

Заряд на наэлектризованном предмете может быть довольно большим, и напряжение может достигать десятков киловольт, но из-за очень маленьких значений силы тока оно для человека неопасно.

Однако такие небольшие разряды могут оказать отрицательное влияние на точную электронику, например, микропроцессоры, поэтому при работе с электронными компонентами: при их производстве, ремонте или использовании особое внимание уделяют предотвращению электронизации. При некоторых условиях релаксация большого накопленного заряда может привести к возгоранию

Самолеты электризуются в полете, поэтому может произойти разряд, когда подводят трап. Чтобы избежать этого, с самолета снимают статическое электричество, отводя его в землю. По этой же причине на бензовозы всегда прикрепляют цепочку, соприкасающуюся с землей. Так предупреждают возгорание топлива

При некоторых условиях релаксация большого накопленного заряда может привести к возгоранию. Самолеты электризуются в полете, поэтому может произойти разряд, когда подводят трап. Чтобы избежать этого, с самолета снимают статическое электричество, отводя его в землю. По этой же причине на бензовозы всегда прикрепляют цепочку, соприкасающуюся с землей. Так предупреждают возгорание топлива.

Оцените статью:

ФИЗИКА

Учебник для 7 класса

Механические явления

Механические явления — это движение тел (рис. 1.3) и действие их друг на друга, например отталкивание или притяжение. Действие тел друг на друга называют взаимо действием.

С механическими явлениями мы познакомимся подробнее уже в этом учебном году.

Рис. 1.3. Примеры механических явлений: движение и взаимодействие тел во время спортивных соревнований (а, б. в); движение Земли вокруг Солнца и ее вращение вокруг собственной оси (г)

Звуковые явления

Звуковые явления, как следует из названия, — это явления, связанные со звуком. К их числу относится, например, распространение звука в воздухе или воде, а также отражение звука от различных препятствий — скажем, гор или зданий. При отражении звука возникает знакомое многим эхо.

Тепловые явления

Тепловые явления — это нагревание и охлаждение тел, а также, например, испарение (превращение жидкости в пар) и плавление (превращение твердого тела в жидкость).

Тепловые явления чрезвычайно широко распространены: так, ими обусловлен круговорот воды в природе (рис. 1.4).

Рис. 1.4. Круговорот воды в природе

Нагретая солнечными лучами вода океанов и морей испаряется. Поднимаясь, пар охлаждается, превращаясь в капельки воды или кристаллики льда. Они образуют тучи, из которых вода возвращается на Землю в виде дождя или снега

Настоящая «лаборатория» тепловых явлений — кухня: варится ли суп на плите, кипит ли вода в чайнике, замораживаются ли продукты в холодильнике — все это примеры тепловых явлений.

Тепловыми явлениями обусловлена и работа автомобильного мотора: при сгорании бензина образуется очень горячий газ, который толкает поршень (деталь мотора). А движение поршня через специальные механизмы передается колесам автомобиля.

Электрические и магнитные явления

Самый яркий (в буквальном смысле слова) пример электрического явления — молния (рис. 1.5, а). Электрическое освещение и электротранспорт (рис. 1.5, б) стали возможными благодаря использованию электрических явлений. Примеры магнитных явлений — притяжение железных и стальных предметов постоянными магнитами, а также взаимодействие постоянных магнитов.

Рис. 1.5. Электрические и магнитные явления и их использование

Стрелка компаса (рис. 1.5, в) поворачивается так, что ее «северный» конец указывает на север именно потому, что стрелка является маленьким постоянным магнитом, а Земля — огромным магнитом. Северное сияние (рис. 1.5, г) вызвано тем, что летящие из космоса электрически заряженные частицы взаимодействуют с Землей как с магнитом. Электрическими и магнитными явлениями обусловлена работа телевизоров и компьютеров (рис. 1.5, д, е).

Оптические явления

Куда бы мы ни посмотрели — мы всюду увидим оптические явления (рис. 1.6). Это явления, связанные со светом.

Пример оптического явления — отражение света различными предметами. Отраженные предметами лучи света попадают нам в глаза, благодаря чему мы видим эти предметы.

Рис. 1.6. Примеры оптических явлений: Солнце излучает свет (а); Луна отражает солнечный свет (б); особенно хорошо отражают свет зеркала (в); одно из самых красивых оптических явлений — радуга (г)

Источник