Клетка элементарная структурная и функциональная единица растений

Клетка элементарная структурная и функциональная единица растений

СТРОЕНИЕ ЦВЕТОЧНОЙ РАСТЕНИЯ. ФУНКЦИИ ЕЕ ОРГАНОВ

КЛЕТКА. РАСТИТЕЛЬНЫЕ ТКАНИ

Среди растений наиболее високоорганізованими есть цветковые, или покрытосеменные. Эти растения изучают на разных уровнях их биологической организации: клетки, ткани, органа. Орган — это часть тела организма, выполняющая определенную функцию (функции). В растения являются вегетативные органы (от лат. вегетативус — растительный) — побег и корень — генеративные (от лат. генераре — рожать) — цветок, плод, семена.

КЛЕТКА — СТРУКТУРНАЯ И ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ОРГАНИЗМА

Клетка — это мельчайшая единица любого организма, в том числе и растительного. Как функциональная единица, она имеет все свойства живого: дышит, питается, ей свойственен обмен веществ; клетка выделяет конечные продукты обмена, имеет раздражимость и отвечает на внешние раздражители, способная к делению и самовоспроизводство.

Строение клетки. Живой частью клетки, которая принимает активное участие в обмене веществ, является протопласт (цитоплазма, ядро, пластиди). Протопласт окружен оболочкой (рис. 1).

Рис. 1. Растительная клетка:

Цитоплазма — бесцветная вязкая вещество, которое находится в постоянном движении. Движение цитоплазмы настолько энергичный, насколько активно функционирует клетка. Важную роль в жизнедеятельности клетки играют ее структурные компоненты. Структурные компоненты цитоплазмы выполняют специфические функции: одни из них отвечают за дыхания, другие — за синтез органических веществ, третьи — за выделения веществ (конечных продуктов обмена) и т. д. Структурные компоненты цитоплазмы называют органелами.

Важной составной частью многих органелл является мембрана.

Мембрана — это тончайшая пленка, в образовании которой участвуют белки и жироподобні вещества. Большинство мембранных белков — ферменты, физиологически активные вещества, которые влияют на ход биохимических процессов в клетке. С участием ферментов в цитоплазме постоянно что-то образуется или что-то разрушается, потому что для цитоплазмы характерно постоянное самообновлению, которое осуществляется в процессе обмена веществ.

Значительное место в цитоплазме занимает вакуоля (или вакуоли). Они составляют 70-90% общего объема взрослой клетки. Вакуоля окружена мембраной-тонопластом и заполненная клеточным соком — раствором различных органических веществ (глюкозы, сахарозы, ферментов, пигментов и др.) и неорганических (воды, минеральных солей). Поверхностную цитоплазматическую мембрану, что прилегает к оболочке, называют плазмалемою.

Важную роль в клетке играет ядро — носитель признаков и свойств клетки и всего организма. Через эту органелу осуществляется передача наследственной информации от клетки к клетке, от материнского организма к дочернему. Кроме того, ядро — центр управления жизненными процессами, протекающими в клетке.

Ядро погруженное в цитоплазму и на поверхности имеет оболочку из двух мембран: наружной и внутренней. Ядерная оболочка пронизана отверстиями — порами. Внешняя мембрана непосредственно переходит в систему мембран цитоплазмы. В ядре находятся хромосомы (от греч. хромос — цвет и soma — тело) и более плотные образования — ядрышки. Число хромосом для каждого вида является постоянной (например, 20 — у кукурузы, 108 — у хвоща полевого). В них записано наследственные качества организма. Хромосомы и ядрышки погружены в ядерный сок.

Двомембранними органелами клетки, кроме ядра, есть пластиди. Они разные по цвету и функциям. Зеленые пластиди называются хлоропластами (от греч. хлорос — зеленый и пластос — образованный), желто-оранжевые или красные — хромопласти (от греч. хрома — краска), бесцветные — лейкопласты (от греч. лейкос — белый). Цвет хлоропластов обусловлен наличием зеленого пигмента хлорофилла. Кроме него в хлоропластах есть каротин и ксантофил — пигменты желто-оранжевого цвета. Каротин и ксантофил определяют цвет хромопластів. Лейкопласты лишены красящих веществ.

К состав растительной клетки входят органические и неорганические вещества. Среди органических веществ наиболее важны белки, углеводы, жиры, нуклеиновые кислоты (от лат. нуклеус — ядро; дословно ядерные кислоты). Из неорганических веществ в живой активно функционирующей клетке содержится много воды (70-95%) и обязательно присутствуют минеральные соли.

Источник



Клетка как структурная и функциональная единица жизни #46

Цитология (cytos – клетка, logos – наука) – наука, изучающая химический состав, строение и функции клеток, их размножение, развитие и взаимодействие в многоклеточном организме.

Основные задачи цитологии: дальнейшее изучение строения и функции клеток и их компонентов (мембран, органоидов, включений, ядра), деления клеток, возможностей их приспособления к изменениям условий окружающей среды, взаимоотношений между клетками многоклеточного организма.

Методы исследования

В цитологии применяются различные методы исследования. С их помощью можно: изучать морфологию клеток и их компонентов (световая, люминесцентная и электронная микроскопия), устанавливать химический состав и локализацию химических веществ в клетке (гистохимические методы), изучать химический состав и протекание биохимических реакций в клетках (биохимические методы), выделять отдельные компоненты клеток для дальнейшего изучения (дифференциальное центрифугирование), устанавливать пространственную конфигурацию и физические свой‘ ства макромолекул (рентгеноструктурный анализ), изучать процессы деления клеток и ход реакций матричного синтеза (авторадиография).

Основные положения клеточной теории

Основоположниками клеточной теории являются М. Шлейден, Т. Шванн и Р. Вирхов. Основные положения современной клеточной теории:

  • клетка-основная структурно-функциональная и генетическая единица живых организмов, наименьшая единица живого;
  • клетки одноклеточных и многоклеточных организмов сходны по строению, химическому составу и важнейшим проявлениям процессов жизнедеятельности;
  • каждая новая клетка образуется в результате деления исходной (материнской) клетки;
  • клетки многоклеточных организмов специализированы: они выполняют разные функции и образуют ткани.

Биологическая мембрана

Строение биологической мембраны

Схема строения биологической мембраны: 1 — гидрофильные концы липидных молекул; 2 — гидрофобные концы липидных молекул; 3 — периферические белки; 4 — полуинтегральные белки; 5 — интегральные белки; 6 — гликокалис.

Эукариотическая клетка представляет собой элементарную живую систему, состоящую из трех основных структурных компонентов оболочки, цитоплазмы и ядра.

Биологическая (элементарная) мембрана имеет толщину 6 — 10 нм и при рассмотрении под электронным микроскопом выглядит трехслойной. Наружный и внутренний слои мембраны (темные) образованы молекулами белков, а средний (светлый) – бимолекулярным слоем липидов (преимущественно фосфолипиды). Липидные молекулы расположены строго упорядоченно: гидрофильные концы молекул обращены к белковым слоям, а гидрофобные – друг к другу. Белковые молекулы по отношению к липидному слою могут располагаться по-разному: большинство их находится на наружной и внутренней поверхностях билипидного слоя (периферические белки), часть молекул пронизывает один слой липидных молекул (полуинтегральные белки), а часть – оба слоя липидных молекул (интегральные белки). Такая структура мембран обеспечивает их свойства:

  • пластичность;
  • полупроницаемость;
  • способность самозамыкаться.

Биологическая мембрана обладает избирательной проницаемостью, которая обусловлена особенностями ее строения. Большинство интегральных белковых молекул, пронизывающих оба липидных слоя, являются ферментами. Они образуют гидрофильные поры, через которые проходят водорастворимые вещества. В липидном слое мембран могут растворяться и проходить через них гидрофобные вещества.

Большую роль в обеспечении избирательного поступления веществ через мембраны играет надмембранный комплекс – гликокаликс (преимущественно разветвленные молекулы гликопротеинов, распопоженные на поверхности мембран), большинство из которых представляют собой рецепторы, воспринимающие («узнающие») определенные химические вещества, окружающие клетку. Гликокаликс обеспечивает взаимоотношения клеток многоклеточного организма, иммунный ответ и другие реакции.

Функции биологической мембраны:

  • структурная – является структурным компонентом плазмалеммы‚ большинства органоидов и кариолеммы;
  • разделительная – разделяет цитоплазму клетки на отдельные отсеки;
  • транспортная – обеспечивает транспорт веществ;
  • рецепторная – узнает определенные вещества;
  • ферментативная – некоторые белки мембран являются ферментами.

Цитоплазматическая мембрана

Цитоплазматическая мембрана – плазмалемма – биологическая мембрана, покрывающая цитоплазму клетки и обеспечивающая обменные процессы клетки с окружающей средой. Плазмалемма образует выросты, выпячивания, складки, микроворсинки, которые многократно увеличивают поверхность клетки. Наружная поверхность мембран животных клеток может быть покрыта муцином (гликопротеин), слизью или хитином, растительных – целлюлозой или пектиновыми веществами, образующими оболочку растительной клетки.

Плазмалемма выполняет следующие основные функции:

  • барьерную – отграничивает и защищает клетку от воздействий факторов окружающей среды;
  • регуляторную – участвует в регуляции обмена веществ и энергии между клеткой и внешней средой;
  • рецепторную – узнает определенные вещества и обеспечивает связь между клетками в тканях многоклеточного организма;
  • структурную – участвует в образовании жгутиков и ресничек.

Транспортировка веществ в клетку

Вещества в клетку могут поступать пассивным и активным транспортом. При пассивном транспорте (ионы, мелкие молекулы, вода) поступление веществ идет по градиенту концентрации (простая диффузия и осмос) без затраты энергии. При облегченной диффузии белки-переносчики временно соединяются с молекулой вещества и проводят его через мембрану.

При активном транспорте идет перемещение веществ против градиента концентрации с затратой энергии АТФ с помощью белков-пермеаз. Через плазмалемму в клетку могут поступать не только мелкие молекулы или ионы, но и крупные молекулы и даже частицы (эндоцитоз). При этом мембрана окружает частицу, края ее смыкаются и частица оказывается в мембранном пузырьке в цитоплазме. Такой способ поглощения твердых частиц называется фагоцитозом, а капель жидкости – пиноцитозом. Выведение веществ из клетки называется экзоцитозом. Эти процессы протекают с затратой энергии АТФ.

Читайте также:  Для чего нужно опрыскивать комнатные растения

Цитоплазма

Цитоплазма содержит гиалоплазму, цитоскелет, органоиды и включения.

Гиалоплазма (цитоплазматический матрикс) на 85% состоит из воды и на 10% из белков. Остальной объем приходится на долю липидов, углеводов, РНК и минеральных солей. Гиалоплазма имеет однородную мелкозернистую структуру, обеспечивает вязкость, эластичность, сократимость и движение цитоплазмы. Она представляет собой коллоидный раствор и является внутренней средой клетки, где протекают реакции обмена.

В цитоплазме клеток расположен цитоскелет‚ образованный развитой сетью белковых нитей (филаментов), способных сокращаться. В зависимости от диаметра филаменты делят на: микрофиламенты (диаметром 6 — 8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Цитоскелет заполняет пространство между ядерной оболочкой и плазмалеммой. Он определяет форму клетки и участвует в различных движениях самой клетки (например, при делении) и во внутриклеточном перемещении органоидов и отдельных соединений.

Включения – это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения. Трофические включения представляют собой запасы питательных веществ. В растительных клетках это жир, крахмальные и белковые зерна, в животных – гликоген и капли жира. Секреторные включения являются продуктами жизнедеятельности клеток желез внешней и внутренней секреции (гормоны, ферменты, слизь). Экскреторные включения представляют собой продукты обмена веществ в растительных и животных клетках (кристаллы щавелевой кислоты, щавелевокислого кальция и др.), подлежащие выведению из клетки.

Органоидные клетки

Органоиды – это постоянные специализированные участки цитоплазмы клетки, имеющие определенное строение и выполняющие определенные функции в клетке. Органоиды общего назначения: митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы‚ клеточный центр, лизосомы и пластиды (характерны для большинства клеток). Органоиды специального назначения характерны для специализированных клеток: миофибриллы – в мышечных клетках; жгутики, реснички, пульсирующие и пищеварительные вакуоли – в клетках протистов. Большинство органоидов имеет мембранное строение. Немембранными органоидами являются рибосомы и клеточный центр.

Эндоплазматическая сеть

Схема строения эндоплазматической сети

Схема строения эндоплазматической сети: 1 — мембрана; 2 — канал; 3 — рибосома.

Эндоплазматическая сеть (ретикулум) представлена системой каналов, образованных биологическими мембранами и пронизывающих гиалоплазму клетки. Имеются два типа эндоплазматической сети – гладкая (агранулярная) и шероховатая (гранулярная), на мембранах последней расположены рибосомы. Функции ЭПС: на мембранах гладкой эндоплазматической сети происходит синтез жиров и углеводов, шереховатая ЭПС принимает также участие в синтезе белков; каналы ЭПС соединяют между собой все органоиды и ядро с цитоплазмой и выполняют транспортную функцию; мембраны ЭПС делят клетку на отсеки, изолирующие различные ферментные системы.

Рибосомы

Рибосомы – мелкие сферические тельца (от 15 до 35 нм), состоящие из большой и малой субъединиц, содержащие преимущественно белки и р-РНК. Субъединицы рибосом образуются в ядрышках и через поры ядерной мембраны поступают в цитоплазму, где располагаются на мембранах эндоплазматической сети, на наружной ядерной мембране, свободно в цитоплазме, в митохондриях и пластидах. Они содержатся в клетках всех типов. Функция рибосом: участие в сборке белковых молекул.

Комплекс Гольджи

Схема строения комплекса Гольджи

Схема строения комплекса Гольджи: 1 — мембрана; 2 — канал; 3 — цистерна; 4 — пузырьки.

Комплекс (аппарат) Гольджи обнаруживается под световым микроскопом в виде сложной сети, расположенной вокруг ядра. Электронномикроскопические исследования показали, что комплекс Гольджи состоит из биологических мембран и напоминает стопку наложенных друг на друга рулонов. Они образуют узкие каналы, расширяющиеся на концах в цистерны, от которых отпочковываются пузырьки. Основные функции комплекса Гольджи: концентрация, обезвоживание, уплотнение веществ, предназначенных для выведения из клетки; образование лизосом и сборка сложных комплексов органических веществ (например, липопротеинов).

Лизосомы

Лизосомы – органоиды клеток шаровидной формы диаметром от 0,2 до 1 мкм. Их стенка образована биологической мембраной. Они содержат около 40 гидролитических ферментов, способных расщеплять белки, жиры, углеводы и нуклеиновые кислоты. Лизосомы образуются в комплексе Гольджи. Функции лизосом: переваривание пищевых веществ и бактерий, поступивших в клетку; разрушение временных органов эмбрионов и личинок и отмирающих в процессе жизнедеятельности структурных компонентов клеток.

Митохондрии

Схема строения митохондрии

Схема строения митохондрии: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — рибосома.

Митохондрии видны под световым микроскопом в виде гранул, палочек, нитей величиной от 0,5 до 7 мкм. При исследовании под электронным микроскопом установлено, что стенка митохондрий состоит из двух мембран наружной гладкой и внутренней, образующей выросты – кристы‚ которые вдаются во внутреннее гомогенное содержимое митохондрии (матрикс). В матриксе имеется автономная система биосинтеза белков: митохондриальная ДНК, рибосомы и различные виды РНК. В митохондриях имеются ферментные системы, обеспечивающие аэробный этап энергетического обмена. Основные функции митохондрий: окисление веществ, синтез АТФ и специфических белков.

Пластиды

Пластиды – органоиды растительных клеток. Их делят на три группы – хлоропласты (зеленые), хромопласты (желтые или оранжевые) и лейкопласты (бесцветные). Пластиды имеют сходное строение и при определенных условиях могут переходить из одного вида в другой. Хромопласты содержат пигменты (каротиноиды), придающие окраску цветкам и плодам. В лейкопластах синтезируются и накапливаются запасные питательные вещества (крахмал, белки, жиры).

Хлоропласты

Схема строения хлоропласта

Схема строения хлоропласта: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — грана; 5 — тилакоид граны; 6 — тилакоид стромы; 7 — ДНК; 8 — рибосомы.

Хлоропласты по форме напоминают двояковыпуклую линзу размером 5 — 10 мкм и содержат зеленый пигмент хлорофилл. Стенка хлоропласта образована двумя мембранами. Внутри находится бесструктурное содержимое – строма. Строма пронизана системой параллельно расположенных элементарных мембран, являющихся продолжением внутренней мембраны и называемых тилакоидами стромы. В отдельных участках несколько тилакоидов, лежащих друг над другом, образуют грану – замкнутую полость диаметром около 0,3 мкм (тилакоиды гран). В мембранах тилакоидов стромы и гран содержится хлорофилл и другие пигменты, где и протекает световая фаза фотосинтеза, а в строме – темновая. В строме хлоропластов имеется автономная система синтеза белков (ДНК, разные виды РНК и рибосомы).

Основные функции хлоропластов: фотосинтез и синтез специфических белков.

Клеточный центр

Кгеточный центр (центросома) расположен вблизи ядра и состоит из двух мелких гранул центриолей, окруженных лучистой сферой (центросферой). С помощью электронного микроскопа установлено, что каждая центриоль представляет собой цилиндрическое тельце длиной 0,3 — 0‚5 мкм и диаметром 0,15 мкм, состоящее из 27 микротрубочек, сгруппированных по три в 9 групп. Функции центросомы: образование полюсов и веретена деления при митозе и мейозе.

Вакуоли и органоиды движения

Вакуоли представляют собой участки гиалоплазмы растительных клеток и протистов, ограниченные элементарной мембраной. У растений они содержат клеточный сок и поддерживают тургорное давление. Вакуоли протистов подразделяют на пищеварительные и сократительные. Органоиды движения клеток представлены жгутиками и ресничками. Они содержат по 20 микротрубочек, образующих 9 пар по периферии и две одиночные, расположенные в центре. Жгутики и реснички покрыты элементарной мембраной. У основания органоидов движения расположены базальные тельца, образующие микротрубочки. Реснички и жгутики служат для передвижения бактерий, протистов, ресничных червей и сперматозоидов. Реснички мерцательного эпителия дыхательных путей освобождают их от попавших частиц.

Источник

Клетка – структурно-функциональная единица живого

Клетка – наименьшая структура, обладающая всеми критериями живого: она растет, развивается, размножается и передает по наследству признаки, реагирует на внешние раздражители и способна к движению. Усилиями ученых М. Шлейдена и Т. Шванна в 1838-1839 гг. была создана клеточная теория, дополненная Р. Вирховым.

В настоящее время клеточная теория включает в себя следующие положения:

1. Клетка – элементарная единица живого, способная к самообновлению, саморегуляции, самовоспроизведению и являющаяся единицей строения, функционирования и развития живых организмов.

2. Клетки всех живых организмов сходны по составу, строению и основным проявлениям жизнедеятельности.

3. Размножение клеток происходит путем деления исходной материнской клетки.

4. В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными способами регуляции.

Различают два основных типа организации клеток: прокариотический и эукариотический. Прокариотические клетки наиболее просто организованы, не имеют обособленного ядра (табл. 1). К прокариотам относятся архебактерии, эубактерии, цианобактерии (сине-зеленые водоросли). Эукариотические клетки представляют более высокий тип клеточной организации, они имеют обособленное ядро и представлены клетками растений, грибов и животных.

Читайте также:  Горшечные растения с декоративными листьями

Сравнительная характеристика прокариотических и эукариотических клеток

Прокариотические клетки Эукариотические клетки
Малые размеры (0,5-3 мкм) Более крупные размеры (10 мкм)
Отсутствует обособленное ядро Имеется обособленное ядро
Генетический материал в виде кольцевой ДНК, не связанной с белками Генетический материал в виде хромосом (ДНК + белки-гистоны)
Отсутствует развитая сеть мембран, нет мембранных органелл Развита сеть мембран, имеются мембранные органеллы
Рибосомы – 70S* Рибосомы – 80S*
Отсутствует клеточный центр Имеется клеточный центр (искл. – высшие растения)
Не характерно внутриклеточное движение цитоплазмы Характерно внутриклеточное движение цитоплазмы

* — коэффициент седиментации, указывает на скорость осаждения при ультрацентрифугировании, зависит от молекулярной массы и формы частиц.

Строение эукариотической клетки. Типичная эукариотическая клетка состоит из трех компонентов: цитоплазматической мембраны (плазмалеммы), цитоплазмы и ядра (рис. 12).

Плазмалемма – двойной слой фосфолипидов с встроенными в него белками.

Мембрана выполняет важные и весьма разнообразные функции:

— определяет и поддерживает форму клетки;

— защищает клетку от механических воздействий, проникновения повреждающих биологических агентов;

— осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки;

— регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава;

— участвует в формировании межклеточных контактов.

Рис. 12. Схема строения эукариотических клеток.

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур. Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая.

На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи. В состав аппарата Гольджи входят полости, ограниченные мембранами и расположенные группами (по 5-10) и крупные и мелкие пузырьки, расположенные на концах полостей.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме.

Митохондрии. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя
мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами. Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (АТФ), универсального источника энергии, необходимого для осуществления процессов жизнедеятельности клетки и целого организма.

Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные — лейкопласты. В пластидах, как и митохондриях, имеется две мембраны: наружная (гладкая) и внутренняя, образующая выпячивания (ламеллы и тилакоиды). В хлоропластах имеется хлорофилл, основная их функция – фотосинтез.

Лизосомы — небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов.

Вакуоль – органелла, отграниченная от цитоплазмы мембраной – тонопластом. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая её, называется клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Вакуоли накапливают воду, могут содержать красящие пигменты, защитные вещества, ферменты, запасные питательные вещества.

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения. К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.

Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка.

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина. Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет.

Клеточный центр. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную
роль при делении клетки; они участвуют в образовании веретена деления.

Ядро – наиболее важный компонент эукариотических клеток.
В состав ядра входят ядерная оболочка и кариоплазма, содержащая хроматин (хромосомы) и ядрышки. Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами. Кариоплазма (нуклеоплазма) представляет собой гелеобразный раствор, в котором находятся разнообразные белки, нуклеотиды, ионы, а также хромосомы и ядрышко. Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Функция ядрышка – сборка субчастиц рибосом.

Хроматин образован молекулами ДНК в комплексе с белками. В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), двойной набор хромосом в соматических клетках — диплоидным (2n). Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом.

Несмотря на единый принцип строения, между клетками эукариотических организмов разных царств имеются различия (табл. 2).

Сравнительная характеристика эукариотических клеток

Признак Клетки
Грибов Растений Животных
Клеточная стенка Из хитина Из целлюлозы Нет
Крупная вакуоль Есть Есть Нет
Хлоропласты Нет Есть Нет
Способ питания Гетеротрофный Автотрофный Гетеротрофный
Центриоли У некоторых видов У низших растений, мхов, папоротников Есть
Резервный питательный углевод Гликоген Крахмал Гликоген

Рост и размножение организмов связаны с делением клеток. Существует два основных способа деления клеток. Митоз — это такое де­ление клеточного ядра, при котором образуются два дочерних ядра с наборами хромосом, идентичными наборам ро­дительской клетки. Например, за счет процессов митоза у человека постоянно возобновляется слущивающийся эпителий кожи.

Мейоз — это деление клеточного ядра с образова­нием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. За счет мейотического деления из диплоидных клеток образуются гаплоидные половые клетки, которые при слиянии (оплодотворении) восстанавливают диплоидный набор хромосом в одноклеточном зародыше – зиготе.

Источник

Клетка элементарная структурная и функциональная единица растений

СТРОЕНИЕ ЦВЕТОЧНОЙ РАСТЕНИЯ. ФУНКЦИИ ЕЕ ОРГАНОВ

КЛЕТКА. РАСТИТЕЛЬНЫЕ ТКАНИ

Среди растений наиболее високоорганізованими есть цветковые, или покрытосеменные. Эти растения изучают на разных уровнях их биологической организации: клетки, ткани, органа. Орган — это часть тела организма, выполняющая определенную функцию (функции). В растения являются вегетативные органы (от лат. вегетативус — растительный) — побег и корень — генеративные (от лат. генераре — рожать) — цветок, плод, семена.

Читайте также:  Фазы стрессовой реакции растений

КЛЕТКА — СТРУКТУРНАЯ И ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ОРГАНИЗМА

Клетка — это мельчайшая единица любого организма, в том числе и растительного. Как функциональная единица, она имеет все свойства живого: дышит, питается, ей свойственен обмен веществ; клетка выделяет конечные продукты обмена, имеет раздражимость и отвечает на внешние раздражители, способная к делению и самовоспроизводство.

Строение клетки. Живой частью клетки, которая принимает активное участие в обмене веществ, является протопласт (цитоплазма, ядро, пластиди). Протопласт окружен оболочкой (рис. 1).

Рис. 1. Растительная клетка:

Цитоплазма — бесцветная вязкая вещество, которое находится в постоянном движении. Движение цитоплазмы настолько энергичный, насколько активно функционирует клетка. Важную роль в жизнедеятельности клетки играют ее структурные компоненты. Структурные компоненты цитоплазмы выполняют специфические функции: одни из них отвечают за дыхания, другие — за синтез органических веществ, третьи — за выделения веществ (конечных продуктов обмена) и т. д. Структурные компоненты цитоплазмы называют органелами.

Важной составной частью многих органелл является мембрана.

Мембрана — это тончайшая пленка, в образовании которой участвуют белки и жироподобні вещества. Большинство мембранных белков — ферменты, физиологически активные вещества, которые влияют на ход биохимических процессов в клетке. С участием ферментов в цитоплазме постоянно что-то образуется или что-то разрушается, потому что для цитоплазмы характерно постоянное самообновлению, которое осуществляется в процессе обмена веществ.

Значительное место в цитоплазме занимает вакуоля (или вакуоли). Они составляют 70-90% общего объема взрослой клетки. Вакуоля окружена мембраной-тонопластом и заполненная клеточным соком — раствором различных органических веществ (глюкозы, сахарозы, ферментов, пигментов и др.) и неорганических (воды, минеральных солей). Поверхностную цитоплазматическую мембрану, что прилегает к оболочке, называют плазмалемою.

Важную роль в клетке играет ядро — носитель признаков и свойств клетки и всего организма. Через эту органелу осуществляется передача наследственной информации от клетки к клетке, от материнского организма к дочернему. Кроме того, ядро — центр управления жизненными процессами, протекающими в клетке.

Ядро погруженное в цитоплазму и на поверхности имеет оболочку из двух мембран: наружной и внутренней. Ядерная оболочка пронизана отверстиями — порами. Внешняя мембрана непосредственно переходит в систему мембран цитоплазмы. В ядре находятся хромосомы (от греч. хромос — цвет и soma — тело) и более плотные образования — ядрышки. Число хромосом для каждого вида является постоянной (например, 20 — у кукурузы, 108 — у хвоща полевого). В них записано наследственные качества организма. Хромосомы и ядрышки погружены в ядерный сок.

Двомембранними органелами клетки, кроме ядра, есть пластиди. Они разные по цвету и функциям. Зеленые пластиди называются хлоропластами (от греч. хлорос — зеленый и пластос — образованный), желто-оранжевые или красные — хромопласти (от греч. хрома — краска), бесцветные — лейкопласты (от греч. лейкос — белый). Цвет хлоропластов обусловлен наличием зеленого пигмента хлорофилла. Кроме него в хлоропластах есть каротин и ксантофил — пигменты желто-оранжевого цвета. Каротин и ксантофил определяют цвет хромопластів. Лейкопласты лишены красящих веществ.

К состав растительной клетки входят органические и неорганические вещества. Среди органических веществ наиболее важны белки, углеводы, жиры, нуклеиновые кислоты (от лат. нуклеус — ядро; дословно ядерные кислоты). Из неорганических веществ в живой активно функционирующей клетке содержится много воды (70-95%) и обязательно присутствуют минеральные соли.

Источник

Тест ЕГЭ Биология 11 класс Бесплатно Клеточная теория. Макро и микроэлементы клетки

Всем живым организмам: растениям, животным, бактериям- присуще клеточное строение.

Клетка— элементарная живая система, основная структурная и функциональная единица растительных и животных организмов, способная к самообновлению, саморегуляции и самовоспроизведению.

Растительная клетка была открыта английским ученым Робертом Гуком в 1665 году, им же был предложен этот термин.

Антоний Левенгук впервые рассмотрел под микроскопом и зарисовал сперматозоиды (1677), бактерии (1683), клетки крови- эритроциты, а также простейших, таких как инфузория-туфелька.

Луи Пастер— один из основоположников микробиологии и иммунологии; создал вакцину против сибирской язвы и прививки против бешенства, поставил точку в споре о самозарождении некоторых живых существ в 1862 году и доказал невозможность этого.

Цитология- наука изучающая строение клетки, ее жизнедеятельность и взаимодействие с окружающей средой

Клеточная теория— одно из величайших научных обобщений 19 века.

Создали эту теорию в 1838–1839 годах немецкий ученый Т. Шванн, который опирался на работы М. Шлейдена и Л.Окена, а 1858г. она была дополнена Р. Вирховым.

Р. Вирхов доказал, что все клетки возникают из других клеток, а не из межклеточного вещества, как считали раньше.

Клеточная теория является обобщенным представлением о строении и функциях клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Основные положения клеточной теории:

1. Клетка- единица строения, жизнедеятельности, роста и развития живых организмов; вне клетки жизни нет.

2. Клетка- единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование.

3. Клетки всех организмов сходны по своему химическому составу, строению и функциям, что свидетельствует о единстве живой природы.

4. Новые клетки образуются только в результате деления материнских клеток («клетка от клетки»).

5. Клетки многоклеточных организмов образуют ткани, из тканей состоят органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

6. Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток- дифференцировка.

Пройти тест и получить оценку можно после входа или регистрации

Развитие знаний о клетке

Клеточная теория способствовала пониманию того, что клетка является самой мельчайшей единицей жизни, которой присущи все признаки живого (размножение, обмен веществ, дыхание и др.).

До изобретения микроскопа люди не знали о существовании клеток.

Прибор для изучения микромира,микроскоп. был изобретен приблизительно в 1590 году голландскими механиками Гансом и Захарием Янсенами.

На основе это этого микроскопа был создан сложный микроскоп Корнелиусом Дреббелем (1572–1634).

В 1665 году английский ученый-физик Роберт Гук (1635–1703) усовершенствовал микроскоп и технологию изготовления линз. Желая убедиться в улучшении качества изображения, он рассматривал под ним срезы пробкового дерева, древесного угля и срезы живых растений.

На срезах растений он обнаружил мельчайшие поры, которые были похожи на пчелиные соты, и назвал их клетками.

Во второй половине XVII века появились работы виднейших микроскопистов Марчелло Мальпиги (1628–1694) и Неемии Грю (1641–1712), также обнаруживших ячеистое (клеточное) строение многих растений.

Антони ван Левенгук самостоятельно разработал конструкцию микроскопа, принципиально отличавшуюся от уже существующей, и усовершенствовал технологию изготовления линз, которые достигали большего увеличения, что позволило открыть одноклеточных животных (инфузорий), а также бактерии и дрожжи.

В клетках растений обнаружил ядра, хлоропласты, утолщения клеточных стенок.

Описал и зарисовал почкование гидр.

Гуго фон Моль различил в клетках растений живое вещество и водянистую жидкость (клеточный сок), обнаружил поры.

Английский ботаник Роберт Броун (1773–1858) в 1831 году открыл ядро в клетках орхидей, затем оно было обнаружено во всех растительных клетках.

Матиас Шлейден (1804–1881) изучал развитие и дифференциацию разнообразных клеточных структур высших растений, рассмотрел в ядрах клеток чешуи лука округлые тельца-ядрышки (1842).

В 1827 году русский ученый-эмбриолог Карл Бэр обнаружил яйцеклетки человека и других млекопитающих и доказал формирование многоклеточного животного организма из единственной клетки- оплодотворенной яйцеклетки, а также сходство стадий зародышевого развития многоклеточных животных, которое наводило на мысль о единстве их происхождения.

Все научные открытия, которые были накоплены к середине XIX века, требовали обобщения, в результате и появилась клеточная теория.

В 1880 г. Уолтер Флемминг описал хромосомы и процессы, происходящие при митозе.

С 1903 г. стала развиваться генетика.

Начиная с 1930 г. стала бурно развиваться электронная микроскопия, что позволило ученым изучать тончайшее строение клеточных структур.

XX век стал веком расцвета биологии и таких наук, как цитология, генетика, эмбриология, биохимия, биофизика.

Источник