Модели по своей природе делятся на

Общая классификация моделей

По форме представления объектов модели делятся на две большие группы: материальные и идеальные.

Материальные модели подразделяются на физические и аналоговые (от слова «аналогия»). В физических моделях обеспечивается аналогия физической природы и модели (аэродинамическая труба, макет самолета, макет города). В аналоговых моделях добиваются сходства процессов, протекающих в оригинале и модели (карта территории, круговая диаграмма с результатами социального опроса).

Идеальные модели подразделяются на символические и интуитивные (мысленные, словесные). Наибольший практический интерес представляют символические модели. Поскольку в них используются численные переменные, связанные уравнениями, их называют также количественными или математическими моделями.

По методам решения модели делятся на: Аналитические модели. Алгоритмические модели. Имитационные моделиКомбинированные модели.

По степени абстракции модели могут быть отнесены к одному из трех уровней:

На нижнем уровне абстракции с помощью моделей решаются проблемы, в которых важны отдельные физические объекты, их индивидуальные свойства, поведение и физические связи, точные размеры, расстояния, время.

На среднем уровне абстракции с помощью моделей решаются проблемы массового производства и обслуживания. Здесь также учитываются отдельные объекты, но их физическими размерами пренебрегают, значения скоростей и времен усредняются или используются стохастические значения.

На высшем уровне абстракции исследователь абстрагируется от индивидуальных объектов и их поведений, рассматривая только совокупности объектов и их агрегированные характеристики, тенденции изменения значений, влияние на динамику системы причинных связей.

По целям моделирования моделиподразделяются на: 1) модели описания, 2) модели оценки и 3) модели оптимизации.

По поведению во времени модели подразделяются на 2 типа:

Статические модели оперируют характеристиками и объектами, не изменяющимися во времени (пример: модели математического программирования). Статические модели обычно имеют дело с установившимися процессами, уравнениями балансового типа, с предельными стационарными характеристиками.

Динамические модели – модели системы, которые изменяются во времени. Моделирование динамических систем состоит в имитации правил перехода системы из одного состояния в другое с течением времени. Изменение состояния системы во времени – это изменение значений переменных системы в соответствии с законами, определяющими связи переменных и их зависимости друг от друга во времени.

Основные понятия имитирующей системы. Имитация основных процессов.

1. Граф модели. Все процессы, независимо от количества уровней структурного анализа, представляются в виде направленного многослойного иерархического графа (в Extend – схема модели).

2. Транзакт – формальный запрос на какое-либо обслуживание. Транзакт — это некоторая сущность, перемещающаяся по узлам графа модели. Пути миграции транзактов по графу модели определяются логикой функционирования компонентов модели в узлах сети. Транзакт, в отличие от обычных заявок, рассматриваемых в системах массового обслуживания, имеет набор динамически изменяющихся свойств и параметров.

Транзакт может выполнять следующие действия: порождать группы (семейства) других транзактов; поглощать другие транзакты; захватывать ресурсы и использовать их некоторое время, а затем – освобождать; определять времена обслуживания/задержки, накапливать информацию о пройденном пути, иметь информацию о своем дальнейшем пути и путях других транзактов.

3. Узлы графа сети представляют собой центры обслуживания транзактов. В системе Extend узлы схемы модели называются блоками.

В узлах транзакты могут задерживаться, обслуживаться, порождать семейства новых транзактов, уничтожать другие транзакты.

С программной точки зрения в каждом узле модели порождается независимый вычислительный процесс. Вычислительные процессы узлов выполняются в едином модельном времени параллельно и координировано, взаимодействуя друг с другом.

Следовательно, сеть функционирующих и взаимодействующих узлов модели не описывается одним вычислительным алгоритмом. Попытки представить имитационную модель в виде алгоритма приводят к написанию больших и сложных моделирующих программ — такой подход называется алгоритмическим моделированием и не всегда доступен экономисту, даже имеющему подготовку в области программирования.

4. Событием называется факт выхода из узла транзакта. Разработчик модели практически не может управлять событиями вручную (из программы). Поэтому функция управления событиями отдана специальной управляющей программе – координатору, автоматически внедряемому в состав модели.

5. Ресурс. Независимо от своей природы ресурс в модели характеризуется тремя параметрами: мощностью, остатком и дефицитом. Мощность ресурса – это максимальное число ресурсных единиц, которые можно использовать для различных целей. Остаток ресурса – число незанятых (свободных) на данный момент единиц ресурса, которые можно использовать для удовлетворения новых запросов транзактов. Дефицит ресурса – длина очереди (число неудовлетворенных запросов) к дефицитному ресурсу.

В задачах динамического управления ресурсами можно выделить три основных типа ресурсов: материальные, информационные и денежные.

Пространство – географическое, декартовое пространство. Узлы, транзакты и ресурсы могут быть привязаны к точкам пространства и мигрировать в нем. В системе Extend понятие геометрического пространства отсутствует.

Генератор транзактовсоздает новые транзакты и передает их узлам модели.

Очередь (с приоритетами или без них). Если приоритеты не учитываются, то транзакты упорядочиваются в очереди в порядке поступления (очередь FIFO). Когда приоритеты учитываются, транзакт поступает не в общую очередь, а в конец своей приоритетной группы.

Узел обслуживания с несколькими параллельными каналами. Обслуж. может выполняться в порядке поступления транзактов, либо по приоритетам.

Терминатор — уничтожает поступивший в него транзакт, удаляя его из модели.

Управляемый генератор (размножитель) транзактов Позволяет создавать новые семейства транзактов. Необходимость в этом узле объясняется тем, что генератор транзактов создает только транзакты, принадлежащие семейству с номером 0. Если возникает необходимость создать семейство транзактов с ненулевым номером, то соответствующее требование содержится в порождающем транзакте, поступающем на вход управляемого генератора транзактов.

Управляемый терминатор транзактов. Иногда в модели возникает необходимость уничтожить заданное число транзактов, принадлежащих семейству с конкретным номером. Требование на такое удаление содержится в уничтожающем транзакте, поступающем на вход узла.

Клапан. Если на клапан воздействовать сигналом из какого-либо узла, то клапан перекрывается, и транзакты не могут через него проходить. Сигнал из другого узла открывает клапан.

Очередь с пространственно-зависимыми приоритетами. Транзакты, попадающие в такую очередь, привязаны к точкам пространства. Очередь обслуживается специальным узлом proc, работающем в режиме пространственных перемещений.

Склад перемещаемых ресурсов – это хранилище какого-то количества однотипного ресурса. Единицы ресурсов в нужном количестве выделяются транзактам, поступающим в узел, если остаток ресурсов на складе позволяет выполнить такое обслуживание, в противном случае возникает очередь необслуженных транзактов и соответственно дефицит ресурса. Во время выполнения модели перемещаемые ресурсы, полученные транзактами, мигрируют вместе с ними по графу и возвращаются в хранилище по ненадобности. Корректность работы склада обеспечивает менеджер – специальный узел.

Менеджер (распорядитель) ресурсов управляет работой узлов типа attach. Для правильной работы достаточно иметь один узел – менеджер, без нарушения логики обслуживающий все склады. Однако не будет ошибкой, если каждый склад будет обслуживаться отдельным менеджером.

Система имитационного моделирования позволяет разрабатывать два типа моделей: разомкнутые и замкнутые. Разомкнутые модели позволяют сравнительно легко реализовать исследование внутренних процессов в фирме, но они не учитывают взаимосвязи с объектами внешней среды: рынком, госбюджетом, населением и т.д. Замкнутые модели выглядят сложнее (в смысле графа модели), но позволяют учесть влияние внешней среды и исследовать связи объекта экономики с другими объектами.

Планирование компьютерного эксперимента. Проведение модельных экспериментов, представление и интерпретация результатов моделирования.

План эксперимента в моделях типа «что будет, если…» должен содержать комбинации входных переменных, для которых будет проводиться моделирование, и последовательность их перебора. Задача заключается в составлении оптимального плана эксперимента, реализация которого позволит при небольшом числе машинных испытаний получить достоверные результатные данные.

В оптимизационных моделях план эксперимента должен обеспечивать поиск оптимума целевой функции при минимальном числе машинных испытаний. Современные системы моделирования, например, Anylogic, имеют встроенный оптимизатор, обеспечивающий решение задачи поиска с помощью эффективного алгоритма оптимизации.

В вероятностных моделях план эксперимента либо сама модель должны дополнительно включать статистическую обработку множественных реализаций случайного опыта, вычисление статистик моделируемых величин, оценку точности и степени доверия полученным результатам.

План эксперимента должен также предусматривать эксперименты по анализу чувствительности модели к изменениям ее входных переменных.

Имитационные модели являются разновидностью алгоритмических моделей и реализуют наиболее сложные и громоздкие алгоритмы описания объектов и систем, включающие случайные процессы, дифференциальные, конечно – разностные и другие уравнения. Имитационные модели отличаются тем, что весьма точно имитируют поведение изучаемого процесса или явления во времени, позволяя оперативно реализовывать сценарии поведения объекта при различных входных параметрах и получать ответ на вопрос «что будет, если…».

Часто имитационная система используется в качестве модуля более общей системы принятия решений, получающей в реальном времени данные мониторинга состояния управляемой системы, оценивающей возможные последствия принятия решений и предлагающей оптимальное (наиболее рациональное).

Модельное время – это виртуальное время, в котором автоматически упорядочиваются все события, причем не обязательно пропорционально реальному времени, где развивается моделируемый процесс.

Масштаб времени – это число, которое задает длительность одной единицы модельного времени, выраженную в секундах реального времени. Можно выделить три разновидности масштаба времени:

1. Реальный масштаб времени, когда длительность единицы модельного времени точно равна длительности единицы реального времени в моделируемом объекте (обычно используется в АСУ технологическими процессами);

Читайте также:  Произведения названные явлениями природы

2. Максимально ускоренный масштаб времени, когда время моделирования определяется чисто процессорным временем выполнения и достигается максимальное быстродействие модели;

Пропорционально ускоренный/замедленный масштаб времени, когда время моделирования пропорционально увеличивается или замедляется. Степень ускорения/замедления характеризуется масштабом, например, масштаб 1:1000 означает, что модельные процессы протекают в 1000 раз быстрее реальных процессов. В ходе машинного эксперимента изучается поведение исследуемой модели М процесса функционирования системы S на заданном интервале времени. Поэтому критерий оценки является в общем случае векторной случайной функцией, заданной на этом же интервале.

Прежде чем приступить к последнему, третьему, этапу моделирования системы, необходимо для его успешного проведения иметь четкий план действий, сводящийся к выполнению следующих основных подэтапов.

3.1. Планирование машинного эксперимента с моделью системы. Планирование машинного эксперимента призвано дать в итоге максимальный объем необходимой информации об объекте моделирования при минимальных затратах машинных ресурсов. При этом различают стратегическое и тактическое планирование машинного эксперимента. При стратегическом планировании эксперимента ставится задача построения оптимального плана эксперимента для достижения цели, поставленной перед моделированием. Тактическое планирование машинного эксперимента преследует частные цели оптимальной реализации каждого конкретного эксперимента из множества необходимых, заданных при стратегическом планировании.

3.2. Определение требований к вычислительным средствам. Необходимо сформулировать требования по времени использования вычислительных средств, т. е. составить график работы на одной или нескольких ЭВМ, а также указать те внешние устройства ЭВМ, которые потребуются при моделировании.

3.3. Проведение рабочих расчетов. После составления программы модели и плана проведения машинного эксперимента с моделью системы S можно приступить к рабочим расчетам на ЭВМ, которые обычно включают в себя: а) подготовку наборов исходных данных для ввода в ЭВМ; б) проверку исходных данных, подготовленных для ввода; в) проведение расчетов на ЭВМ; г) получение выходных данных, т. е. результатов моделирования.

3.4. Анализ результатов моделирования системы. Чтобы эффективно проанализировать выходные данные, полученные в результате расчетов на ЭВМ, необходимо знать, что делать с результатами рабочих расчетов и как их интерпретировать.

3.5. Представление результатов моделирования. Целесообразно в каждом конкретном случае выбрать наиболее подходящую форму, так как это существенно влияет на эффективность их дальнейшего употребления заказчиком.

3.6. Интерпретация результатов моделирования. Основное содержание этого подэтапа — переход от информации, полученной в результате машинного эксперимента с моделью к информации применительно к объекту моделирования, на основании которой и будут делаться выводы относительно характеристик процесса функционирования исследуемой системы S.

3.7. Подведение итогов моделирования и выдача рекомендаций. При подведении итогов моделирования должны быть отмечены главные особенности, полученные в соответствии с планом эксперимента над моделью результатов, проведена проверка гипотез и предположений и сделаны выводы на основании этих результатов.

3.8. Составление технической документации по третьему этапу. Эта документация должна включать в себя: а) план проведения машинного эксперимента; б) наборы исходных данных для моделирования; в) результаты моделирования системы; г) анализ и оценку результатов моделирования; д) выводы по полученным результатам моделирования; указание путей дальнейшего совершенствования машинной модели и возможных областей ее приложения.

Источник



Понятие и классификация моделей

Моделирование построено на использовании разнообразных мо­делей, что обусловливает необходимость определения ее понятия и классификацию моделей, применяемых в системном анализе.

Модель — это такой материальный или мысленно представляе­мый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

По своей природе модели делятся на физические, символиче­ские и смешанные.

Физические модели воплощены в каких-либо материальных объ­ектах, имеющих естественное или искусственное происхождение (ото­бранные в природе или созданные человеком для целей исследова­ния), и подразделяются на модели подобия и аналоговые. Первые ха­рактеризуются масштабными изменениями, выбираемыми в соответст­вии с критериями подобия, вторые — основаны на известных аналогиях между протеканием процессов в различных системах. Примером анало­говой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях перено­сятся на совокупность объектов близкой экономической природы.

Символические модели характеризуются тем, что параметры ре­ального объекта и отношения между ними представлены символами: семантическими (словами), математическими, логическими. Класс символических моделей весьма широк. Наряду со словесными описа­ниями функционирования объектов — сценариями — сюда также отно­сятся схематические модели: графики и блок-схемы, логические блок-схемы (например, алгоритмы программ) и таблицы решений, номо­граммы, а также математические описания — математические модели.

Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физи­чески. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена инфор­мацией с ней.

По целевому назначению различают модели структуры, функ­ционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

— канонические модели, характеризующие взаимодействие объ­екта с окружением через входы и выходы:

— модели внутренней структуры, характеризующие состав компо­нентов объекта и связи между ними;

— модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия ко­торых подчинены интересам целого.

Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр симво­лических моделей:

— модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до пре­кращения функционирования;

— модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирова­ния отдельных элементов объекта при реализации тех или иных функ­ций объектов;

— информационные модели, отображающие во взаимосвязи ис­точники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

— процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных опера­ций, в частности, реализации процедур принятия управленческих ре­шений;

— временные модели, описывающие процедуру функционирова­ния объектов во времени и распределение ресурса "время" по отдель­ным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их со­вместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономиче­ским критериям.

В зависимости от степени формализации связей между фак­торами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они приме­няются, когда модель сложной системы гораздо легче построить в ви­де алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логиче­ских условий — разветвлений хода течения процесса. Тематическое описание для элементов может быть очень простым, однако взаимо­действие большого количества простых, по математическому описа­нию, элементов позволяет описать сложность системы.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравне­ния связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, ко­торые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть пред­сказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного мо­делирования.

В зависимости от фактора времени различают динамические и статические модели.

Модели, в которых входные факторы, а, следовательно, и ре­зультаты моделирования явно зависят от времени, называются дина­мическими, а модели, в которых зависимость от времени либо отсут­ствует совсем, либо проявляется слабо или неясно, называются ста­тическими

Вопрос 36

Процесс моделирования обязательно включает и построение аб­стракций и умозаключения по аналогии и конструирование новых сис­тем. Основная особенность моделирования в том, что это метод опо­средованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследо­ватель ставит между собой и объектом и с помощью которого изучает интересующий его объект.

Первый этап моделирования — построение модели. Он пред­полагает наличие некоторых знаний об объекте — оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства ори­гинала и модели. При разработке модели должны соблюдаться следующие прин­ципы:

1. Принцип компромисса между ожидаемой точностью резуль­татов моделирования и сложностью модели.

2. Принцип баланса, точности требует соразмерности систе­матической погрешности моделирования и случайной погрешности в задании параметров описания. Этот принцип устанавливает требова­ние соответствия между точностью исходных данных и точностью мо­дели, между точностью отдельных элементов модели, между система­тической погрешностью модели и случайной погрешностью при интер­претации и усреднении результатов.

3. Принцип разнообразия элементов модели, в соответствии с которым количество элементов должно быть достаточным для прове­дения конкретных исследований

4. Принцип наглядности модели трактует, что при прочих рав­ных условиях модель, которая привычна, удобна, построена на обще­принятых терминах, обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная.

Читайте также:  Система опытов с предметами природы

5. Принцип блочного представления модели. Для его реали­зации следует соблюдать следующие правила:

— обмен информацией между блоками должен быть минималь­ным;

— блок модели, мало влияющей на интерпретацию результатов моделирования, является несущественным и подлежащим удалению;

— блок модели, осуществляющий взаимодействие с исследуемой частью системы, можно заменить множеством упрощенных эквивален­тов, не зависящих от исследуемой части, при этом моделирование проводится в нескольких вариантах по каждому упрощенному эквива­ленту;

— при упрощении блока, воздействующего на исследуемую часть системы, следует рассмотреть возможность прямого упрощения замк­нутого контура без разрыва обратной связи. Для этого блок заменяют вероятным эквивалентом с оценкой его статистических характеристик, полученных путем автономного исследования упрощенного блока;

— замена блока воздействиями, наихудшими по отношению к ис­следуемой части системы

Второй этап моделирования — изучение модели. Здесь мо­дель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.

Третий этап моделирования — перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Зна­ния о модели должны быть скорректированы с учетом тех свойств объекта — оригинала, которые не нашли отражения или были измене­ны при построении модели.

Четвертый этап моделирования —практическая проверка по­лученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.

Моделирование представляет собой циклический процесс. Это оз­начает, что за первым четырехэтапным циклом может последовать вто­рой, третий и т.д. При этом знания об исследуемом объекте расширяют­ся, а исходная модель постепенно совершенствуются. Недостатки, об­наруженные после первого цикла моделирования, обусловленные ма­лым знанием объекта и ошибками в построении модели, можно испра­вить в последующих циклах. Таким образом, в методологии моделиро­вания заложены большие возможности саморазвития.

Источник

Понятие и классификация моделей.

Модель– это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект – оригинал так, что его непосредственное изучение даёт новые знания об объекте – оригинале.

По своей природемодели делятся на физические, символические и смешанные.

Физические модели воплощены в каких-либо материальных объектах, имеющих естественное или искусственное происхождение, и подразделяются на модели подобия и аналоговые. Первые характеризуются масштабными изменениями, выбираемыми в соответствии с критериями подобия, вторые – основаны на известных аналогиях между протеканием процессов в различных системах.

Символические модели характеризуются тем, что параметры реального объекта и отношения между ними представлены символами: семантическими, математическими, логическими.

Смешанные модели применяются тогда, когда часть элементов и процессов не удаётся описать символами, и они моделируются физически. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счёт обмена информацией с ней.

По целевому назначению различают модели структуры, функционирования и стоимостные.

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

— канонические модели, характеризующие взаимодействие объекта с окружением через входы и выходы;

— модели внутренней структуры, характеризующие состав компонентов объекта и связи между ними;

— модели иерархической структуры, в которых объект расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модели структур обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей:

— модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до прекращения функционирования;

— модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объектов;

— информационные модели, отображающие во взаимосвязи источники и потребителей информации, виды информации, характер её преобразования, а также временные и количественные характеристики данных.

процедурные модели, описывающие порядок взаимодействия исследуемого объекта при выполнении различных операций;

— временные модели, описывающие процедуру функционирования объектов во времени и распределение ресурса «время» по отдельным компонентам объектам.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны.

В зависимости от степени формализации связей между факторами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравнения связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные.

В зависимости от факторов времени различают динамические и статические модели.

Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими, а модели, в которых зависимость от времени либо отсутствует совсем, либо проявляется слабо или неясно, называются статическими.

36. Структура процесса моделирования и содержание его этапов.

Первый этаппостроение модели. Он предполагает наличие некоторых знаний об объекте – оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства оригинала и модели.

Принципы разработки модели:

1. Принцип компромисса между ожидаемой точностью результатов моделирования и сложностью модели.

2. Принцип баланса, точности требует соразмерности систематической погрешности моделирования и случайной погрешности в задании параметров описания.

3. Принцип разнообразия элементов модели, в соответствии с которым количество элементов должно быть достаточным для проведения конкретных исследований.

4. Принцип наглядности модели трактует, что при прочих равных условиях модель, которая привычна, удобна, построена на общепринятых терминах, обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная.

5. Принцип блочного представления модели.

6. Принцип специализации моделей подтверждает целесообразность использования относительно малых, условных подмоделей, предназначенных для анализа функционирования системы в узком диапазоне условий. В соответствии с этим принципом сначала максимально упрощают модель, а потом производят последовательное её усложнение в пределах допустимых вычислительных ограничений.

Прежде чем использовать модель необходимо в процессе исследования проверить, отвечает ли она предъявляемым требованиям:

— полноты, адаптивности, возможности включения достаточно широких изменений;

— быть достаточно абстрактной, чтобы допускать варьирование большим числом переменных;

— быть ориентированной на реализацию с помощью существующих технических средств;

— удовлетворять требованиям и условиям, ограничивающим время решения задачи;

— обеспечивать получение полезной информации об объекте для решения поставленных задач исследования;

— по возможности строиться с использованием общепринятой терминологии;

— предусматривать возможность проверки соответствия её оригиналу, проверки адекватности;

— обладать устойчивостью по отношению к ошибкам в исходных данных. Это требование особенно важно в условиях низкой точности исходных данных.

Второй этап моделирования – изучение модели. Здесь модель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о её поведении. Конечным результатом этого этапа является совокупность знаний о модели.

Третий этап моделирования – перенос знаний с модели на оригинал. Этот процесс проводится по определённым правилам. Знания о модели должны быть скорректированы с учётом тех свойств объекта – оригинала, которые не нашли отражения или были изменены при построении модели.

Четвёртый этап моделирования – практическая проверка полученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им.

Моделирование представляет собой циклический процесс. Это означает, что за первым четырёхэтапным циклом может последовать второй, третий и т.д. При этом, знания об исследуемом объекте расширяются, а исходная модель постепенно совершенствуется.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источник

Модели по своей природе делятся на

При изучении систем различной природы исследователь сталкивается с проблемой их отображения, а также использования в познавательной и практической деятельности. Объект фиксируется терминами языка, отображается на бумаге чертежами, графиками, фотографиями, уравнениями и формулами, а также макетами, механизмами, устройствами. Потом эти отображения применяются для научного исследования (например, наблюдения, эксперимента) либо для практической деятельности. Отображения объектов называются моделями, процесс их создания — моделированием, а использование, соответственно, в науке называются модельным исследованием (модельным экспериментом, модельным наблюдением) и модельной практикой в практической деятельности. Способы построения моделей получили название методов моделирования. Они очень разнообразны. Практически каждая наука имеет свой арсенал методов моделирования. Различают геометрическое, физическое, химическое, биологическое, экономическое, социальное, политическое, культурологическое и математическое моделирование.

Читайте также:  Значение птицы колибри для человека и природы

Понимание моделей в науке отличается известным разбросом. Наиболее краткое, почти афористичное ее определение дал А. И. Уемов, который считает, что модель представляет собой систему, исследование которой служит средством получения информации о другой системе [24, с. 48]. К. Б. Батароев дает развернутое определение модели: «Модель есть созданная или выбранная субъектом система, воспроизводящая существенные для данной цели познания стороны (элементы, свойства, отношения, параметры) изучаемого объекта и в силу этого находящаяся с ним в таком отношении замещения и сходства (в частности изоморфизма), что исследование ее служит опосредованным способом получения знания об этом объекте» [2, с. 28]. Необходимыми и достаточными признаками модели являются сформулированные В. А. Штоффом такие условия [27, с. 87-88]:

  • между моделью и оригиналом имеется отношение сходства, форма которого явно выражена и точно зафиксирована (условия отражения или уточненной аналогии);
  • модель в процессе научного познания является заместителем изучаемого объекта (условие репрезентации);
  • изучение модели позволяет получить информацию (сведения) об оригинале (условия экстраполяции).

Заметим, что для метода моделирования свойственны некоторые парадоксы. Применение моделей обусловлено сложностью изучаемого объекта, поэтому модель проще оригинала. Она абстрагируется от несущественных качеств объекта. Однако в процессе исследования никогда нет 100 % уверенности в том, что то или иное качество объекта является несущественным с точки зрения исследовательской задачи. Поэтому простота модели может оказаться, что называется, «святой простотой».

Здесь же видится и другая особенность модели, которая роднит ее с одноразовой посудой. Каждая модель создается под определенную исследовательскую задачу и не применима к решению других, какой бы привлекательной модель ни была. Распространенный в науке перенос моделей с одной задачи на другую далеко не всегда оправдан и обоснован.

Классификация моделирования

Мир моделей разнообразен. Он обусловлен ростом многообразия и сложности человеческой деятельности. В. А. Штофф выделяет две большие группы моделей: материальные (менее удачные синонимы: вещественные, физические, действующие) и мысленные (менее удачные синонимы: идеальные, воображаемые, умозрительные). К числу материальных моделей относятся модели, которые сконструированы человеком искусственно или взяты из природы в качестве образцов. Мысленные же отличаются тем, что они созданы в форме мысленных образов, существующих лишь в голове исследователя, теоретика [27, с. 88-89].

Подобного же подхода придерживаются специалисты в области математики и кибернетики. Они делят моделирование на две большие разновидности: на физическое, при котором модель воспроизводит изучаемый процесс с сохранением изучаемых свойств, и математическое, при котором модель представляет собой математическое описание объекта моделирования.

К. Б. Батароев дает развернутую классификацию моделей, включая в нее: пространственно-геометрическое, физическое, химическое, математическое, кибернетическое, бионическое и биолого-информационное, экономико-математическое и социо-кибернетическое, эко-лого-кибернетическое, логическое, концептуальное, теоретическое, гносеологическое [2, с. 74-75].

Интересен подход к классификации моделей Ю. М. Плотинского, который выделяет среди разновидностей модели содержательную, формальную, концептуальную модели [20, с. 85-92]. То, что такие типы моделей существуют, ни у кого не может вызвать никаких сомнений. Другое дело, что эти модели из разных классов. Содержательная и формальная модели определяют отражение объекта, а концептуальная выделена по функциональному назначению.

По нашему мнению, известные классификации моделей и моделирования не всегда носят сущностный характер. Для того чтобы классификация отвечала природе моделей, она должна иметь три среза, которые соответствуют природе модели: отражательность, репрезентация и экстраполяция (табл. 22). Отражательный срез модели характеризуется ее субстанциональностью, т.е. той «материей», из которой «сотканы» объекты моделирования, их масштабами, временными характеристиками. Репрезентационный срез моделирования связан с целями исследования, формой модели, месте ее в познавательном процессе, связи с теми или иными методами науки и т.п. Экстраполяционный аспект модели заключается в использовании полученных посредством модели знаний, в распространении их на те или иные сферы деятельности человека.

Основание классификации Модель
Вид Характеристика
Субстанциональный аспект модели
Природа объекта моделирования Пространственно-геометрическая Система, отражающая пространственное размещение объектов и процессов
Физическая Система, отражающая совокупность физических объектов, действующих на физических законах
Техническая Система, отражающая техническое устройство
Кибернетическая Отражение кибернетической системы
Химическая Отражение химической системы
Биологическая Система, отражающая организмы или их сообщества
Социальная Модель общества или его составляющих
Экономическая Система, отражающая экономические объекты и процессы
Политическая Система, отражающая политические объекты и процессы
Интеллектуальная Система, отражающая знание, способы познания и мышления
Масштабы объекта моделирования Микромасштабная Система, отражающая относительно небольшие образования
Макромасштабная Система, отражающая значительные по величине образования
Метамодель Система, отражающая сверхбольшое образование
Мегамодель Система, отражающая бесконечное по величине образование
Временная характеристика объекта моделирования Историческая Система, отражающая прошлое бытие объекта или процесса
Актуальная Система, отражающая настоящее бытие объекта или процесса
Прогностическая Система, отражающая будущее бытие объекта и процесса
Характер детерминации объекта моделирования Стохастическая, вероятностная Система, отражающая объект или процесс, поведение которого носит вероятностный характер
Детерминированная Система, отражающая объект или процесс, поведение которого предопределено
Динамика объекта Статические Отражает статические, неменяющиеся образования
Динамические Отражает объекты, отличающиеся изменяемостью
Репрезентационный аспект модели
Степень сложности модели Простая Система, состоящая из небольшого числа элементов и связей между ними
Сложная Система, включающая в себя большое число простых моделей
Сверхсложная Система, включающая в себя большое число сложных моделей
Способ отражения объекта Содержательная Отражает содержание системы
Формальная Отражает объект на формальных языках
Способ представления модели Абстрактная Единство некоторых символов или знаков
Материальная Совокупность материальных явлений
Форма представления модели Графическая Графики, диаграммы, блок-схемы и т. п.
Числовая Конкретные числовые характеристики
Логическая Описывается в логических выражениях
Математическая Построена с использованием аппарата математики
Мысленная Выступает как некоторые идеи и представления об объекте
Компьютерная Реализуется с помощью компьютерной техники
Материальная Макеты, установки, тренажеры, действующие модели приборов и устройств
Экстраполяционный аспект модели
Количество выполняемых моделью функций Монофункциональная Отличается одной узкой функцией
Полифункциональная Отличается реализацией одновременно нескольких функций
Характер выполняемых моделью функций Исследовательская Применяется в научном познании
Тренинговая Используется для тренировки практических умений и навыков специалистов в различных областях
Обучения Для формирования у обучаемых знаний, умений и навыков
Практическая Заместители объектов в практической деятельности
Роль в познании Наблюдения Используется для сбора фактов при наблюдении
Описательная Дает описание объекта или процесса
Экспериментальная Для проведения эксперимента
Концептуальная Направлена на построение концепции того или иного объекта или процесса
Теоретическая Ориентирована на объяснение объекта или процесса посредством построения его теории

Таблица 22 — Классификация моделей

Сравнение классификаций систем и моделей приводит к выводу об их принципиальной схожести. Это обусловлено тем, что модель представляет собой специфическую разновидность системы, которая создается человеком специально для решения исследовательских задач. Поскольку системный метод выступает средством моделирования систем, то можно говорить о системном моделировании, предполагающем представление объектов любой природы в виде систем.

Системное моделирование включает две составляющие. Первая — это представление модели объекта или процесса как системы с ее основными параметрами и характеристиками. Модель здесь выступает совокупностью взаимосвязанных между собой элементов, отличается структурной организацией и функциональным предназначением. Вторая составляющая системного моделирования заключается в том, что системность состоит не только в качестве способа представления, но и в способе изучения модели. Известно, что моделирование — несамостоятельный способ научного познания, а создание для того или иного метода научного познания удобного для осуществления познавательных процедур объекта-модели. Отсюда вторая составляющая означает применение к системной модели системного анализа, который строится на знании системных закономерностей.

Особенности системного моделирования

Системное моделирование представляет собой совокупность конкретных разновидностей моделирования, наиболее важные среди которых:

  • атрибутивное, направленное на систематизацию информации о свойствах объектов. При этом используются различного рода классификации, матрицы, таблицы, которые позволяют систематизировать свойства объектов, выделить главные и второстепенные;
  • структурное, обеспечивающее представление структуры объекта или процесса моделирования;
  • организационное, предполагающее изучение организации системы;
  • функциональное, ориентированное на построение и исследование функций изучаемого явления;
  • структурно-функциональное, ставящее своей целью исследование взаимосвязи структуры и функции изучаемого объекта или процесса;
  • витальное, направленное на представление и изучение тех или иных этапов жизненного пути системы.

Системное моделирование не ограничивается удовлетворением простого любопытства по отношению к модели. Оно очень прагматично. Его важнейшим назначением выступает не просто получение знаний о системе, а ее оптимизация. Это поиск оптимума характеристик системы в соответствии с некоторыми критериями оптимальности. Математика оперирует понятием «оптимума функции». Оптимум функции f (x) на множестве M есть частное значение f (x) этой функции, удовлетворяющее одному из соотношений: f (x) больше и равно f (x) для всех х из М (глобальный максимум) или для всех f (x) меньше и равно f (x) для всех х из М (глобальный минимум). Точка оптимума функции f (x) на множество M является одной из точек экстремума этой функции на множестве М.

Системное моделирование ориентировано на поиск в системной модели оптимальных характеристик в целях преобразования по принципам оптимальности реальных объектов практической деятельности людей.

Источник