Природа планет гигантов солнечной системы



Планеты-гиганты, их кольца и планеты-спутники

Наша Солнечная система, если иметь в виду ее вещество, состоит из Солнца и четырех планет-гигантов, а еще проще − из Солнца и Юпитера, поскольку масса Юпитера больше, чем всех прочих околосолнечных объектов – планет, комет, астероидов − вместе взятых. Фактически, мы живем в двойной системе Солнце-Юпитер, а вся остальная «мелочь» подчиняется их гравитации

Сатурн вчетверо меньше Юпитера по массе, но по составу похож на него: он тоже в основном состоит из легких элементов – водорода и гелия в отношении 9:1 по количеству атомов. Уран и Нептун еще менее массивны и по составу богаче более тяжелыми элементами – углеродом, кислородом, азотом. Поэтому группу из четырех гигантов обычно делят пополам, на две подгруппы. Юпитер и Сатурн называют газовыми гигантами, а Уран и Нептун – ледяными гигантами. Дело в том, что Уран и Нептун обладают не очень толстой атмосферой, а большая часть их объема – это ледяная мантия; т. е. довольно твердое вещество. А у Юпитера и Сатурна почти весь объем занят газообразной и жидкой «атмосферой». При этом все гиганты имеют железокаменные ядра, превышающие по массе нашу Землю.

На первый взгляд, планеты-гиганты примитивны, а маленькие планеты земного типа намного интереснее. Но может быть это потому, что мы пока плохо знаем природу этих четырех гигантов, а не потому что они малоинтересны. Просто мы с ними слабо знакомы. Например, к двум ледяным гигантам − Урану и Нептуну − за всю историю астрономии лишь однажды приближался космический зонд («Вояджер-2», NASA, 1986 и 1989 гг.), да и то – пролетел, не останавливаясь, мимо них. Много ли он мог там увидеть и измерить? Можно сказать, что к исследованию ледяных гигантов мы еще по-настоящему не приступали.

Газовые гиганты изучены намного детальнее, поскольку кроме пролетных аппаратов («Пионер-10 и 11», «Вояджер-1 и 2», «Улисс», «Кассини», «Новые горизонты», NASA и ESA) рядом с ними длительно работали искусственные спутники: «Галилео» (NASA) в 1995-2003 гг. и «Джуно» (NASA) с 2016 г. исследовали Юпитер, а «Кассини» (NASA и ESA) в 2004-2017 гг. изучал Сатурн.

Наиболее глубоко был исследован Юпитер, причем – в прямом смысле: в его атмосферу с борта «Галилео» был сброшен зонд, который влетел туда со скоростью 48 км/с, раскрыл парашют и за 1 час опустился на 156 км ниже верхней кромки облаков, где при внешнем давлении 23 атм и температуре 153 °C прекратил передавать данные, по-видимому, из-за перегрева. На траектории спуска он измерил многие параметры атмосферы, включая даже ее изотопный состав. Это заметно обогатило не только планетологию, но и космологию. Ведь гигантские планеты не отпускают от себя вещество, они навечно сохраняют то, из чего они родились; особенно это касается Юпитера. У его облачной поверхности вторая космическая скорость составляет 60 км/с; ясно, что ни одной молекуле оттуда никогда не уйти.

Поэтому мы думаем, что изотопный состав Юпитера, особенно состав водорода, характерен для самых первых этапов жизни, по крайней мере, Солнечной системы, а, может быть, и Вселенной. И это очень важно: соотношение тяжелого и легкого изотопов водорода говорит о том, как в первые минуты эволюции нашей Вселенной протекал синтез химических элементов, какие физические условия тогда были.

Юпитер быстро вращается, c периодом около 10 часов; а поскольку средняя плотность планеты невелика (1,3 г/см 3 ), центробежная сила заметно деформировала ее тело. При взгляде на планету можно заметить, что она сжата вдоль полярной оси. Степень сжатия Юпитера, т. е. относительная разница между его экваториальным и полярным радиусами составляет (RэквRпол)/Rэкв = 0,065. Именно средняя плотность планеты (ρ ∝ M/R 3 ) и ее суточный период (T) определяют форму ее тела. Как известно, планета – это космическое тело в состоянии гидростатического равновесия. На полюсе планеты действует только сила тяготения (GM/R 2 ), а на экваторе ей противодействует центробежная сила (V 2 /R = 4π 2 R 2 /RT 2 ). Их отношением и определяется форма планеты, поскольку давление в центре планеты не должно зависеть от направления: экваториальная колонка вещества должна весить столько же, сколько полярная. Отношение этих сил (4π 2 R/T 2 )/(GM/R 2 ) ∝ 1/(M/R 3 )T 2 ∝ 1/(ρT 2 ). Итак, чем меньше плотность и продолжительность суток, тем сильнее сжата планета. Проверим: средняя плотность Сатурна 0,7 г/см 3 , период его вращения 11 час, − почти такой же, как у Юпитера, − а сжатие 0,098. Сатурн сжат в полтора раза сильнее Юпитера, и это легко заметить при наблюдении планет в телескоп: сжатие Сатурна бросается в глаза.

Быстрое вращение планет-гигантов определяет не только форму их тела, а значит и форму их наблюдаемого диска, но и его внешний вид: облачная поверхность планет-гигантов имеет зональную структуру с полосами разного цвета, вытянутыми вдоль экватора. Потоки газа движутся быстро, со скоростями во многие сотни километров в час; их взаимное смещение вызывает сдвиговую неустойчивость и совместно с силой Кориолиса порождает гигантские вихри. Издалека заметны Большое Красное Пятно на Юпитере, Большой Белый Овал на Сатурне, Большое Темное Пятно на Нептуне. Особенно знаменит антициклон Большое Красное Пятно (БКП) на Юпитере. Когда-то БКП было вдвое больше нынешнего, его видели еще современники Галилея в свои слабенькие телескопы. Сегодня БКП побледнело, но все-таки этот вихрь уже почти 400 лет живет в атмосфере Юпитера, поскольку охватывает гигантскую массу газа. Его размер больше земного шара. Такая масса газа, единожды закрутившись, не скоро остановится. На нашей планете циклоны живут примерно неделю, а там − столетия.

В любом движении рассеивается энергия, а значит требуется ее источник. Каждая планета обладает двумя группами источников энергии – внутренними и внешними. Извне на планету льется поток солнечного излучения и падают метеороиды. Изнутри планету греет распад радиоактивных элементов и гравитационное сжатие самой планеты (механизма Кельвина — Гельмгольца). Среди внешних источников энергии Солнце вне конкуренции. Хотя мы уже видели, как на Юпитер падают крупные объекты, вызывающие мощные взрывы (комета Шумейкеров — Леви 9), оценки частоты их падения показывают, что средний поток приносимой ими энергии существенно меньше, чем приносит солнечный свет. С другой стороны, роль внутренних источников энергии неоднозначна. У планет земной группы, состоящих из тяжелых тугоплавких элементов, единственным внутренним источником тепла служит радиоактивный распад, но вклад его ничтожен по сравнению с теплом от Солнца.

У планет-гигантов доля тяжелых элементов существенно ниже, зато они массивнее и легче сжимаются, что делает выделение гравитационной энергии их главным источником тепла. А поскольку гиганты удалены от Солнца, внутренний источник становится конкурентом внешнему: порой планета греет себя сама сильнее, чем ее нагревает Солнце. Даже Юпитер, ближайший к Солнцу гигант, излучает (в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. А энергия, которую излучает в космос Сатурн, в 2,5 раза больше той, которую планета получает от Солнца.

Гравитационная энергия выделяется как при сжатии планеты в целом, так и при дифференциации ее недр, т. е. при опускании к центру более плотного вещества и вытеснении оттуда более «плавучего». Вероятно, работают оба эффекта. Например, Юпитер в нашу эпоху уменьшается приблизительно на 2 см в год. А сразу после формирования он имел вдвое больший размер, сжимался быстрее и был значительно теплее. В своих окрестностях тогда он играл роль маленького солнышка, на что указывают свойства его галилеевых спутников: чем ближе они к планете, тем плотнее и тем меньше содержат летучих элементов (как и сами планеты в Солнечной системе).

Кроме сжатия планеты как целого, важную роль в гравитационном источнике энергии играет дифференциация недр. Вещество разделяется на плотное и плавучее, и плотное тонет, выделяя свою потенциальную гравитационную энергию в виде тепла. Вероятно, в первую очередь, это конденсация и последующее падение капель гелия сквозь всплывающие слои водорода, а также фазовые переходы самого водорода. Но могут быть явления и поинтереснее: например, кристаллизация углерода – дождь из алмазов (!), правда, выделяющий не очень много энергии, поскольку углерода мало.

Внутреннее строение планет-гигантов пока изучается только теоретически. На прямое проникновение в их недра у нас мало шансов, а методы сейсмологии, т. е. акустического зондирования, к ним пока не применялись. Возможно, когда-нибудь мы научимся просвечивать их с помощью нейтрино, но до этого еще далеко.

К счастью, в лабораторных условиях уже неплохо изучено поведение вещества при тех давлениях и температурах, которые царят в недрах планет-гигантов, что дает основания для математического моделирования их недр. Для контроля адекватности моделей внутреннего строения планет есть методы. Два физических поля, – магнитное и гравитационное, − источники которых находятся в недрах, выходят в окружающее планету пространство, где их можно измерять приборами космических зондов.

На структуру магнитного поля действует много искажающих факторов (околопланетная плазма, солнечный ветер), зато гравитационное поле зависит только от распределения плотности внутри планеты. Чем сильнее тело планеты отличается от сферически симметричного, тем сложнее ее гравитационное поле, тем больше в нем гармоник, отличающих его от простого ньютоновского GM/R 2 .

Прибором для измерения гравитационного поля далеких планет, как правило, служит сам космический зонд, точнее – его движение в поле планеты. Чем дальше зонд от планеты, тем слабее в его движении проявляются мелкие отличия поля планеты от сферически симметричного. Поэтому необходимо запускать зонд как можно ближе к планете. С этой целью с 2016 года рядом с Юпитером работает новый зонд Juno (NASA). Он летает по полярной орбите, чего раньше не было. На полярной орбите высшие гармоники гравитационного поля проявляются заметнее, поскольку планета сжата, а зонд время от времени подходит очень близко к поверхности. Именно это дает возможность измерить высшие гармоники разложения гравитационного поля. Но по этой же причине зонд довольно скоро закончит свою работу: он пролетает через наиболее плотные области радиационных поясов Юпитера, и его аппаратура от этого сильно страдает.

Радиационные пояса Юпитера колоссальны. При большом давлении водород в недрах планеты металлизируется: его электроны обобщаются, теряют связь с ядрами, и жидкий водород становится проводником электричества. Огромная масса сверхпроводящей среды, быстрое вращение и мощная конвекция − эти три фактора способствуют генерации магнитного поля за счет динамо-эффекта. В колоссальном магнитном поле, захватывающем летящие от Солнца заряженные частицы, формируются чудовищные радиационные пояса. В их наиболее плотной части лежат орбиты внутренних галилеевых спутников. Поэтому на поверхности Европы человек не прожил и дня, а на Ио – и часа. Даже космическому роботу нелегко там находиться.

Более удаленные от Юпитера Ганимед и Каллисто в этом смысле значительно безопаснее для исследования. Поэтому именно туда Роскосмос собирается в будущем послать зонд. Хотя Европа с ее подледным океаном была бы намного интереснее.

Ледяные гиганты Уран и Нептун выглядят промежуточными между газовыми гигантами и планетами земного типа. По сравнению с Юпитером и Сатурном у них меньше размер, масса и центральное давление, но при этом их относительно высокая средняя плотность указывает на большую долю элементов группы CNO. Протяженная и массивная атмосфера Урана и Нептуна в основном водородно-гелиевая. Под ней водная с примесью аммиака и метана мантия, которую принято называть ледяной. Но у планетологов принято называть «льдами» сами химические элементы группы CNO и их соединения (H2O, NH3, CH4 и т. п.), а не их агрегатное состояние. Так что мантия в большей степени может быть жидкой. А под ней лежит сравнительно небольшое железно-каменное ядро. Поскольку концентрация углерода в недрах Урана и Нептуна выше, чем у Сатурна и Юпитера, в основании их ледяной мантии может лежать слой жидкого углерода, в котором конденсируются кристаллы, т. е. алмазы, оседающие вниз.

Подчеркну, что внутреннее строение планет-гигантов активно обсуждается, и конкурирующих моделей пока довольно много. Каждое новое измерение с борта космических зондов и каждый новый результат лабораторного моделирования в установках высокого давления приводят к пересмотру этих моделей. Напомню, что прямое измерение параметров весьма неглубоких слоев атмосферы и только у Юпитера было осуществлено лишь однажды зондом, сброшенным с «Галилео» (NASA). А все остальное – косвенные измерения и теоретические модели.

Магнитные поля Урана и Нептуна слабее, чем у газовых гигантов, но сильнее, чем у Земли. Хотя у поверхности Урана и Нептуна индукция поля примерно такая же, как у поверхности Земли (доли гаусса), но объем, а значит и магнитный момент намного больше. Геометрия магнитного поля у ледяных гигантов очень сложная, далекая от простой дипольной формы, характерной для Земли, Юпитера и Сатурна. Вероятная причина в том, что генерируется магнитное поле в относительно тонком электропроводящем слое мантии Урана и Нептуна, где конвекционные потоки не обладают высокой степенью симметрии (поскольку толщина слоя много меньше его радиуса).

При внешнем сходстве Уран и Нептун нельзя назвать близнецами. Об этом говорит их разная средняя плотность (соответственно 1,27 и 1,64 г/см 3 ) и разная интенсивность выделения тепла в недрах. Хотя Уран в полтора раза ближе к Солнцу, чем Нептун, и поэтому получает от него в 2,5 раза больше тепла, он холоднее Нептуна. Дело в том, что Нептун выделяет в своих недрах даже больше тепла, чем получает от Солнца, а Уран не выделяет почти ничего. Поток тепла из недр Урана вблизи его поверхности составляет всего 0,042 ± 0,047 Вт/м 2 , что даже меньше чем у Земли (0,075 Вт/м 2 ). Уран – самая холодная планета в Солнечной системе, хотя и не самая далекая от Солнца. Связано ли это с его странным вращением «на боку»? Не исключено.

Читайте также:  Необычные симбиозы в природе

Теперь поговорим о кольцах планет.

Все знают, что «окольцованная планета» − это Сатурн. Но при внимательном наблюдении выясняется, что кольца есть у всех планет-гигантов. С Земли их заметить сложно. Например, кольцо Юпитера мы не видим в телескоп, но замечаем его в контровом освещении, когда космический зонд смотрит на планету с ее ночной стороны. Это кольцо состоит из темных и очень мелких частиц, размер которых сравним с длинной волны света. Они практически не отражают свет, но хорошо рассеивают его вперед. Тонкими кольцами окружены Уран и Нептун.

В общем, двух одинаковых колец у планет не бывает, они все разные.

В шутку можно сказать, что и у Земли есть кольцо. Искусственное. Оно состоит из нескольких сотен спутников, выведенных на геостационарную орбиту. На этом рисунке не только геостационарные спутники, но и те, что на низких орбитах, а также на высоких эллиптических орбитах. Но геостационарное кольцо выделяется на их фоне вполне заметно. Впрочем, это рисунок, а не фото. Сфотографировать искусственное кольцо Земли пока никому не удалось. Ведь его полная масса невелика, а светоотражающая поверхность ничтожна. Едва ли суммарная масса спутников в кольце составит 1000 тонн, что эквивалентно астероиду размером 10 м. Сравните это с параметрами колец планет-гигантов.

Заметить какую-либо взаимосвязь между параметрами колец довольно сложно. Материал колец Сатурна белый как снег (альбедо 60 %), а остальные кольца чернее угля (А = 2-3 %). Все кольца тонкие, а у Юпитера довольно толстое. Все из булыжников, а у Юпитера из пылинок. Структура колец тоже разная: одни напоминают граммофонную пластинку (Сатурн), другие – матрешкообразную кучу обручей (Уран), третьи – размытые, диффузные (Юпитер), а кольца Нептуна вообще не замкнуты и похожи на арки.

В голове не укладывается относительно малая толщина колец: при диаметре в сотни тысяч километров их толщина измеряется десятками метров. Мы никогда не держали в руках столь тонкие предметы. Если сравнить кольцо Сатурна с листом писчей бумаги, то при его известной толщине размер листа был бы с футбольное поле!

Как видим, кольца у всех планет различаются по составу частиц, по их распределению, по морфологии – у каждой планеты-гиганта свое уникальное украшение, происхождение которого мы пока не понимаем. Обычно кольца лежат в экваториальной плоскости планеты и вращаются в ту же сторону, куда вращается сама планета и группа близких к ней спутников. В прежние времена астрономы считали, что кольца вечны, что они существуют от момента зарождения планеты и останутся при ней навсегда. Сейчас точка зрения изменилась. Но расчеты показывают, что кольца не слишком долговечны, что их частицы тормозятся и падают на планету, испаряются и рассеиваются в пространстве, оседают на поверхности спутников. Так что украшение это временное, хотя и долгоживущее. Сейчас астрономы считают, что кольцо – это результат столкновения или приливного разрушения спутников планеты. Возможно, кольцо Сатурна самое молодое, поэтому оно такое массивное и богатое летучими веществами (снегом).

А так может сфотографировать хороший телескоп с хорошей камерой. Но здесь еще мы не видим у кольца почти никакой структуры. Давно была замечена темная «щель» − разрыв Кассини, который более 300 лет назад открыл итальянский астроном Джованни Кассини. Кажется, что в разрыве ничего нет.

Плоскость кольца совпадает с экватором планеты. Иного и быть не может, поскольку у симметричной сплющенной планеты вдоль экватора в гравитационном поле потенциальная яма. На серии снимков, полученных с 2004 по 2009 гг., мы видим Сатурн и его кольцо в разных ракурсах, поскольку экватор Сатурна наклонен к плоскости его орбиты на 27°, а Земля всегда недалеко от этой плоскости. В 2004 г. мы точно оказались в плоскости колец. Сами понимаете, при толщине несколько десятков метров самого кольца мы не видим. Тем не менее, черная полоска на диске планеты ощущается. Это тень кольца на облаках. Она видна нам, поскольку Земля и Солнце с разных направлений смотрят на Сатурн: мы смотрим точно в плоскости кольца, но Солнце освещает немножко под другим углом и тень кольца ложится на облачный слой планеты. Раз есть тень, значит в кольце довольно плотно упакованное вещество. Тень кольца исчезает только в дни равноденствия на Сатурне, когда Солнце оказывается точно в его плоскости; и это независимо указывает на малую толщину кольца.

Источник

Планеты-гиганты

Планеты-гиганты — самые крупные тела Солнечной системы

Планеты-гиганты — самые большие тела Солнечной системы после Солнца: Юпитер, Сатурн, Уран и Нептун. Они располагаются за Главным поясом астероидов и поэтому их ещё называют «внешними» планетами.
Юпитер и Сатурн — газовые гиганты, то есть они состоят в основном из газов, находящихся в твёрдом состоянии: водорода и гелия.
А вот Уран и Нептун были определены как ледяные гиганты, поскольку в толще самих планет вместо металлического водорода находится высокотемпературный лёд.
Планеты-гиганты во много раз больше Земли, но по сравнению с Солнцем, они совсем не большие: Планеты-гиганты на фоне Солнца

Компьютерные расчёты показали, что планеты-гиганты играют важную роль в деле защиты внутренних планет земной группы от астероидов и комет.
Не будь этих тел в Солнечной системе, наша Земля в сотни раз чаще подвергалась бы падению астероидов и комет!
Как же планеты-гиганты защищают нас от падений незванных гостей?

Вы наверняка слышали о «космическом слаломе», когда автоматические станции, направляемые к далёким объектам Солнечной системы, совершают «гравитационные манёвры» около некоторых планет. Они подходят к ним по заранее расчитанной траектории и, используя силу их притяжения, разгоняются ещё сильнее, но не падают на планету, а «выстреливают» слово из пращи с ещё большей скоростью, чем на входе и продолжают своё движение. Тем самым экономится топливо, которое было бы нужно для разгона одними только двигателями.
Точно также планеты-гиганты выбрасывают за пределы Солнечной системы астероиды и кометы, которые пролетают мимо них, пытаясь прорваться к внутренним планетам, в том числе к Земле. Юпитер, со своими собратьями, увеличивает скорость такого астероида, сталкивает его со старой орбиты, тот вынужденно меняет свою траекторию и улетает в космическую бездну.
Так что, без планет-гигантов, жизнь на Земле вероятно была бы невозможна из-за постоянных метеоритных бомбардировок.

Ну, а теперь вкратце познакомимся с каждой из планет-гигантов.

Юпитер — самая большая планета-гигант.

Первым по порядку от Солнца, из планет-гигантов, идёт Юпитер. Это и самая большая планета Солнечной системы.
Иногда говорят, что Юпитер — не состоявшаяся звезда. Но, чтобы запустить собственный процесс ядерных реакций, Юпитеру не хватает массы, причём довольно много. Хотя, масса потихоньку растёт за счёт поглощения межпланетного вещества — комет, метеоритов, пыли и солнечного ветра. Один из вариантов развития Солнечной системы показывает, что если так пойдёт и дальше, то Юпитер вполне может стать звездой или коричневым карликом. И тогда наша Солнечная станет двойной звёздной ситемой. Кстати, двойные звёздные системы — обычное дело в окружающем нас Космосе. Одиночных звёзд, вроде нашего Солнца, — гораздо меньше.

Существуют расчёты, показывающие, что уже сейчас Юпитер излучает больше энергии, чем поглощает её от Солнца. И если это действительно так, то ядерные реакции уже должны идти, иначе энергии взяться просто неоткуда. А это уже признак именно звезды, а не планеты.

Сравнение размеров Земли и Юпитера: Сравнение размеров Земли и Юпитера
На этом снимке видно и знаменитое Большое Красное Пятно, его ещё называют «глазом Юпитера». Это гигантский вихрь, который существует по-видимому уже не одну сотню лет.

В 1989 году к Юпитеру был запущен аппарат «Галилео». За 8 лет работы, он сделал уникальные снимки самой планеты-гиганта, спутников Юпитера, а также провёл множество измерений.
Что творится в атмосфере Юпитера и в его недрах — остаётся только догадываться. Зонд аппарата «Галилео» спустившися в его атмосферу на 157 км., выдержал всего 57 минут, после чего был раздавлен давлением в 23 атмосферы. Но, он успел сообщить о мощных грозах и ураганных ветрах, также передал данные о составе и температуре.
Ганимед, самый большой из спутников Юпитера, является и самым большим из спутников планет в Солнечной системе.
В самом начале исследований, в 1994 году «Галилео» наблюдал падение кометы Шумейкеров-Леви на поверхность Юпитера и прислал изображения этой катастрофы. С Земли это событие наблюдать было нельзя — только остаточные явления, которые стали видны по мере вращения Юпитера.

Сатурн.

Сатурн

Далее идёт не менее знаменитое тело Солнечной системы — планета-гигант Сатурн, который известен прежде всего благодаря своим кольцам. Кольца Сатурна состоят из частичек льда, размером от пылинок до довольно больших кусков льда. При внешнем диаметре колец Сатурна 282000 километров, их толщина — всего около ОДНОГО километра. Поэтому, при взгляде сбоку, кольца Сатурна не видны.
Но, у Сатурна есть и спутники. Сейчас открыто около 62 спутников Сатурна.
Самый большой спутник Сатурна — Титан, размер которого больше планеты Меркурий! Но, он состоит в значительной мере из замёрзшего газа, то есть легче Меркурия. Если Титан переместить на орбиту Меркурия, то лёдяной газ испарится и размеры Титана сильно уменьшатся.
Ещё один интересный спутник Сатурна — Энцелад, привлекает учёных тем, что под его ледяной поверхностью есть океан жидкой воды. А если так, то в ней возможна и жизнь, ведь и температуры там положительные. На Энцеладе открыты мощные водяные гейзеры, бьющие в высоту на сотни километров! Подробнее об Энцеладе
Исследовательская станция «Кассини» находится на орбите Сатурна с 2004 года. За это время собрано множество данных о самом Сатурне, его спутниках и кольцах.
Так же осуществлена посадка автоматической станции «Гюйгенс» на поверхность Титана, одного из спутников Сатурна. Это была первая в истории посадка зонда на поверхность небесного тела во Внешней части Солнечной системы.
Несмотря на свои значительные размеры и массу, плотность Сатурна примерно в 9.1 раза меньше плотности Земли. Поэтому, ускорение свободного падения на экваторе — всего 10,44 м/с². То есть, совершив там посадку, мы бы не почувствовали возросшей силы тяжести.

Уран — ледяной гигант.

Атмосфера Урана состоит из водорода и гелия, а недра — изо льда и твёрдых горных пород. Уран выглядит довольно спокойной планетой, в отличие от буйного Юпитера, но всё-же в его атмосфере были замечены вихри. Если Юпитер и Сатурн называют газовыми гигантами, то Уран и Нептун — ледяные гиганты, поскольку в их недрах отсутствует металлический водород, а вместо него много льда в различных высокотемпературных состояниях.
Уран выделяет очень мало внутреннего тепла и поэтому является самой холодной из планет Солнечной системы — на нём зарегистрирована темперутура -224°С. Даже на Нептупне, который находится дальше от Солнца — и то теплее.
У Урана есть спутники, но они не очень крупные. Самый большой из них, Титания, в диаметре более чем в два раза меньше нашей Луны.

Уран с кольцамиНет, я не забыл повернуть фотографию 🙂

В отличие от других планет Солнечной системы, Уран как бы лежит на боку — его собственная ось вращения лежит почти в плоскости вращения Урана вокруг Солнца. Поэтому, он поворачивается к Солнцу то Южным, то Северным полюсами. То есть, солнечный день на полюсе длится 42 года, а потом сменяется на 42 года «полярной ночи», во время которой освещён противоположный полюс.

Этот снимок сделан телескопом Хаббл в 2005 году. Видны кольца Урана, светло окрашенный южный полюс и яркое облако в северных широтах.

Оказывается, не только Сатурн украсил себя кольцами!

Любопытно, что все планеты носят имена римских богов. И только Уран назван именем бога из древнегреческой мифологии.
Ускорение свободного падения на экваторе Урана — 0,886 g. То есть, сила тяжести на этой планете-гиганте даже меньше чем на Земле! И это несмотря на его огромную массу. Виной этому — опять же малая плотность ледяного гиганта Урана.

Космические аппараты пролетали мимо Урана, делая попутно снимки, но детальных исследований пока не проводилось. Правда, NASA планирует отправить к Урану исследовательскую станцию в 2020-ых годах. Есть планы и у Европейского космического агентства.

Нептун.

Нептун — самая дальняя планета Солнечной системы, после того, как Плутон «разжаловали» в «карликовые планеты». Как и остальные планеты-гиганты, Нептун значительно больше и тяжелее Земли. НептунНептун, как и Уран, является ледяной планетой-гигантом.

Нептун находится довольно далеко от Солнца и поэтому стал первой планетой, открытой благодаря математическим вычислениям, а не при помощи прямых наблюдений. Планета была зрительно обнаружена в телескоп 23 сентября 1846 года астрономами Берлинской обсерватории, на основании педварительных расчётов француского астронома Леверье.
Любопытно, что судя по рисункам, Галилео Галией наблюдал Нептун задолго до этого, ещё в 1612 году, в свой первый телескоп! Но. он не распознал в нём планету, приняв за неподвижную звезду. Поэтому, Галилей не считается первооткрывателем планеты Нептун.

Читайте также:  Чем жабы полезны для природы

Несмотря на свои значительные размеры и массу, плотность Нептуна примерно в 3,5 раза меньше плотности Земли. Поэтому, на экваторе сила тяжести — всего 1,14 g, то есть почти как на Земле, как и у двух предыдущих планет-гигантов.

Источник

Солнечная система: строение и характеристика

Солнечная система — звёздная система в галактике Млечный Путь, включающая Солнце и естественные космические объекты, обращающиеся вокруг него: планеты, их спутники, карликовые планеты, астероиды, метеороиды, кометы и космическую пыль.

Строение Солнечной системы

В состав солнечной системы входит восемь основных планет и пять карликовых, вращающихся приблизительно в одной плоскости. По своим физическим свойствам планеты делятся на земную группу и планеты-гиганты.

Планеты земной группы относительно небольшие и плотные, состоят из металлов и минералов. К ним относятся:

  • Меркурий,
  • Венера,
  • Земля,
  • Марс.

Планеты-гиганты во много раз больше других планет, они состоят из газов и льда. Это:

  • Юпитер,
  • Сатурн,
  • Уран
  • Нептун.

Орбита Земли делит солнечную систему на две условные области. Во внутренней находятся ближайшие к Солнцу планеты — Меркурий и Венера. Во внешней области — более удалённые от Солнца, чем Земля: Марс, Юпитер, Сатурн, Уран и Нептун.

Пространство между орбитами Марса и Юпитера, а также за Нептуном (пояс Койпера) занимают малые небесные тела: малые планеты и астероиды. Также по пространству Солнечной системы курсируют кометы и потоки метеороидов.

Рассмотрим планеты солнечной системы по порядку.

Состав Солнечной системы

Солнце

Звезда класса «жёлтый карлик». 98% массы Солнца приходится на водород и гелий, но в нём также содержатся все известные химические элементы. Солнце ярче, чем 85% звёзд в галактике, а температура его поверхности превышает 5 700°C.

Солнце почти в 110 раз больше Земли, а его масса в тысячу раз превосходит массу всех планет, вместе взятых. Именно благодаря солнечному свету и теплу на Земле существует жизнь.

Меркурий

Самая близкая к Солнцу и самая маленькая планета солнечной системы — Меркурий лишь немного больше Луны. Меркурий получает в семь раз больше тепла и света, чем Земля, поэтому температура его поверхности колеблется от +430°C днём до −190°C ночью. Это самый большой температурный перепад в солнечной системе.

Несмотря на то что люди наблюдали Меркурий на небе с древнейших времён, известно о нём немного. Первый снимок его поверхности был получен только в 1974 году. Она оказалась покрыта многочисленными кратерами и скалами.

Атмосфера практически отсутствует — возможно, причиной тому солнечное излучение, а может быть, небесное тело такого размера просто не в состоянии удерживать плотную газовую оболочку.

Поскольку для оборота вокруг Солнца Меркурию нужно пройти гораздо меньшее расстояние, чем Земле, год на нём значительно короче — всего 88 земных суток. За один меркурианский день успевает пройти более двух местных лет. Поскольку ось вращения планеты почти не наклонена, год на ней не делится на сезоны.

Меркурий назван по имени древнеримского бога торговли и хитрости.

Венера

Вторая планета от Солнца и ближайшая к Земле. Венеру иногда называют «близнецом» нашей планеты: её размеры и масса очень близки к земным. Однако на этом сходство заканчивается.

Венера окутана очень плотным слоем облаков, за которыми невозможно разглядеть поверхность. Из-за парникового эффекта она нагревается до 480°C — абсолютный рекорд для солнечной системы. Облака проливаются кислотными дождями и пропускают только 40% солнечного света, поэтому на планете царит вечный сумрак.

Из-за сильнейшего атмосферного давления (как на глубине 900 метров в земных океанах) ни один исследовательский аппарат, отправленный на Венеру, не просуществовал дольше двух часов. Тем не менее учёным удалось узнать, что атмосфера планеты на 94% состоит из углекислого газа, а состав грунта не отличается от других планет земной группы. На Венере много вулканов, но почти нет кратеров — все метеориты сгорают в плотной атмосфере.

День на Венере длится дольше, чем на любой другой планете — около 243 земных суток. Продолжительность года чуть уступает дню — 225 земных суток. Как и на Меркурии, сезонов на Венере нет.

Облака Венеры хорошо отражают солнечный свет, поэтому на земном небе планета светится ярче других. Возможно, именно поэтому древние римляне связали её с богиней красоты и любви. Примечательно, что Венера — одна из двух планет солнечной системы, вращающихся вокруг оси против часовой стрелки.

Земля

Третья и крупнейшая планета земной группы. Уникальные условия Земли позволили развиться на планете жизни.

Атмосфера Земли состоит из азота (78%), кислорода (21%), углекислого и других газов (1%). Кислород и азот — необходимые вещества для строительства ДНК. Озоновый слой атмосферы поглощает солнечную радиацию. Кислород на Земле синтезируют растения из углекислого газа. Не будь их, наша планета напоминала бы Венеру. С другой стороны, некоторое количество CO2 в атмосфере обеспечивает на Земле комфортную для жизни температуру.

70% поверхности Земли покрыты водой. В отличие от Луны и Меркурия, на Земле очень мало кратеров. Учёные считают, что они исчезли под воздействием ветра и эрозии почвы.

Из-за наклона Земной оси (23,45°) на Земле хорошо различимы сезоны года. Для оборота вокруг своей оси Земле требуется чуть менее 24 часов — это самый короткий день среди планет земной группы.

Земля имеет спутник — Луну. Её размер составляет ¼ земного диаметра, что довольно много для спутника. Притяжение Луны влияет на земную воду, вызывая приливы и отливы. Вращение Луны вокруг своей оси и вокруг Земли синхронно, поэтому Луна всегда обращена к Земле только одной стороной.

Земля — единственная планета, название которой не связано с мифологией. И русское «земля», и английское «earth», и латинское «terra» обозначают почву или сушу.

Марс меньше Земли почти в два раза. Долгое время считалось, что на красной планете существует жизнь. Люди наблюдали на его поверхности объекты, казавшиеся им постройками, дорогами и даже гигантскими скульптурами. Однако на поверку марсианская цивилизация оказалась обманом зрения. Многочисленные исследовательские миссии пока тоже не подтвердили наличие какой-либо жизни на поверхности планеты.

Атмосфера Марса по составу напоминает венерианскую — 95% углекислого газа. Но поскольку она очень тонкая и разреженная, парникового эффекта не возникает, поэтому максимальная температура поверхности планеты — около 0°C, а атмосферное давление в 160 раз меньше, чем на Земле. В составе марсианской атмосферы есть водяной пар, а на полюсах лежат шапки ледников, но жидкой воды на поверхности нет.

И всё же учёные считают Марс самой перспективной планетой для освоения, поскольку погодные условия на ней довольно приемлемы для человека. Если не считать низкое содержание кислорода в атмосфере, радиацию и пылевые бури, длящиеся по несколько месяцев. На Марсе находится самая высокая гора в солнечной системе — вулкан Олимп, высота которого 27 километров. Это в три раза выше Эвереста, высочайшей горы Земли.

Из-за удалённости от Солнца год на Марсе почти в два раза длинней земного. Скорость вращения вокруг своей оси почти такая же, как на Земле, так что сутки длятся 24 часа 40 минут. Наклон оси Марса составляет 25,2°, а значит, на нём, как и на Земле, существуют сезоны.

Марс имеет два спутника — Фобос и Деймос, представляющие собой бесформенные каменные глыбы сравнительно небольших размеров. Из-за красного цвета древние римляне назвали планету именем бога войны.

Юпитер

Юпитер, самая большая из планет-гигантов, отделена от Марса поясом астероидов. Масса Юпитера в два раза больше, чем масса всех остальных планет, лун, комет и астероидов системы вместе взятых. По яркости на земном небе он уступает только Венере. Люди наблюдали его с древнейших времён и связывали с сильнейшими богами своих пантеонов. Юпитер — имя римского царя богов.

Юпитер является газовым гигантом. Коричневые и белые полосы — это облака соединений серы, которые движутся в атмосфере планеты с чудовищной скоростью. Большое красное пятно Юпитера — гигантский вихрь. С момента его обнаружения в 1664 году он стал заметно меньше, но и теперь в несколько раз превосходит Землю по размерам.

О структуре планеты учёные пока только догадываются. Предположительно она состоит из газов, плавно переходящих в металлическое состояние по мере приближения к ядру. Считается, что ядро Юпитера каменное. Сильнейшее в системе магнитное поле Юпитера воздействует на частицы в миллионах километрах вокруг и даже достигает орбиты Сатурна. Это одна из причин огромного числа спутников у планеты.

В 1610 году астроном Галилео Галилей обнаружил четыре крупнейших спутника Юпитера. В наше время известно 79 объектов, вращающихся вокруг планеты. Некоторые из них напоминают Луну, другие выглядят как большие астероиды. Особый интерес представляет Ио — планета с мощнейшими в системе вулканами. Более мелкие частицы образуют вокруг Юпитера кольца, хотя они не так заметны, как у соседнего Сатурна.

Сатурн

Как и спутники Юпитера, Сатурн был обнаружен Галилеем в начале XVII века. На сегодняшний день эта планета остаётся одной из наименее изученных.

Атмосфера Сатурна состоит из водорода (96%) и гелия (4%) с незначительными вкраплениями других газов. Скорость ветра на Сатурне достигает 1 800 км/ч — это самые сильные ветра в системе. Облака в его атмосфере тоже образуют полосы и пятна гигантских вихрей, хоть и менее заметные, чем на Юпитере.

О происходящем за атмосферным слоем планеты известно мало. Предположительно, в центре находится металлосиликатное ядро, окружённое спрессованными до состояния металла газами, плотность которых уменьшается по мере удаления от ядра.

Планета находится в 9,5 раз дальше от Солнца, чем Земля, и делает оборот вокруг звезды за 29,5 земных лет. Наклон оси Сатурна напоминает земной. По скорости вращения вокруг своей оси Сатурн уступает только Юпитеру. Как и у других газовых гигантов, скорость вращения на разных широтах у планеты разная. Это происходит потому, что поверхность Сатурна текучая, а не твёрдая. Плотность Сатурна так мала, что он мог бы плавать на поверхности воды.

Главная особенность Сатурна — впечатляющая система из семи колец. Они состоят из миллиардов ледяных осколков, которые отлично отражают свет, а потому хорошо заметны. Радиус колец огромен — 73 000 километра, а толщина — всего 1 километр. Считается, что эти кольца — осколки спутника, разрушенного гравитацией планеты.

Недавние исследования показали, что вокруг Сатурна вращаются 82 спутника — на данный момент это рекорд солнечной системы (до 2016 года лидером считался Юпитер). Все спутники покрыты льдом. Крупнейший, Титан, имеет плотную азотистую атмосферу и озёра жидкого метана на поверхности. На другом спутнике, Энцеладе, обнаружена жидкая вода, выталкиваемая на поверхность гейзерами. Это делает его крайне интересным объектом для изучения.

Сатурн назван именем древнеримского бога времени, отца Юпитера.

Уран был открыт сравнительно недавно — в 1781 году. В 1986 году его достиг единственный космический аппарат — «Вояджер-2».

Атмосфера планеты окрашена в однородный сине-зелёный цвет. Учёные предполагают, что такой её делает метан. Ядра Урана и Нептуна предположительно состоят изо льдов, поэтому их называют «ледяными гигантами». Уран — самая холодная планета в системе: средняя температура его поверхности составляет −224°C. Скорость ветра на Уране достигает 900 км/ч. Солнечный свет летит до Урана чуть менее трёх часов, а год на планете равен 84 земным.

Как и Сатурн, Уран окружён кольцами. Они не столь яркие и расположены под углом около 90° к орбите, в то время как сама планета вращается «на боку» (угол отклонения оси — 99°). В результате половину уранианского года на южном полушарии длится день, а на южном — ночь. А следующие полгода — наоборот.

Подобно Венере, Уран вращается вокруг своей оси против часовой стрелки. На настоящий момент известно 23 спутника Урана, все покрыты льдом. Уран назван именем древнегреческого бога неба, отца Сатурна, и продолжает «семейную» линию.

Нептун

Нептун находится так далеко, что его нельзя увидеть с Земли невооружённым глазом. Он был открыт в 1846 году, когда астрономы искали планету, вызывающую орбитальные отклонения Урана.

Достоверные данные о Нептуне получены «Вояджером-2» в 1989 году. Верхние слои его атмосферы состоят из водорода (80%), гелия (19%) и метана (1%). Именно обилием метана объясняется сине-голубое свечение планеты.

Раз в несколько лет в атмосфере планеты появляются и исчезают тёмные пятна штормов. Предположительно в центре Нептуна — ледяное ядро, а мантия состоит из жидкой смеси воды и аммиака. Средняя температура поверхности — −214°С.

Солнечный свет достигает Нептуна почти за 5 часов, а нептунианский год равен 165 земным. Полный оборот вокруг своей оси планета делает довольно быстро — сутки длятся всего 17 часов. Наклон оси Нептуна близок к земному — 28°.

Читайте также:  Картинки мир природы для дошкольников

На настоящий момент учёные знают о 14 спутниках Нептуна, лишь один из которых (Тритон) обладает сферической формой. Это единственный в системе крупный спутник с обратным вращением. У Нептуна есть три кольца, хотя выражены они слабо.

За глубокий синий цвет планета была названа именем древнеримского бога морей.

Учите астрономию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду ASTRO10112020 вы получите бесплатный доступ на одну неделю к курсу астрономии за 10 и 11 классы.

Другие объекты Солнечной системы

Помимо планет и их спутников, в солнечную систему входит множество малых небесных тел — карликовых планет, астероидов, комет и метеороидов.

Большинство астероидов сосредоточено в поясе между орбитами Марса и Юпитера. Это объекты неправильной формы, состоящие из металлов и силикатов. Хотя некоторые астероиды даже имеют собственные спутники, их масса слишком мала, чтобы удерживать атмосферу. Крупнейшие — карликовая планета Церера, астероиды Паллада, Веста и Гигея.

За орбитой Нептуна расположен пояс Койпера — средоточие ещё почти неизученных объектов. Самым крупным из них являются карликовая планета Плутон со спутником Хароном.

Под действием гравитации планет орбиты астероидов могут меняться и пересекаться. Иногда это приводит к столкновению. Планеты притягивают метеорные тела — обломки небесных тел. Если атмосфера планеты плотная — они сгорают при падении, но самые крупные всё же достигают поверхности, образуя кратеры. Последний известный случай падения метеорита на Землю произошёл в Челябинской области в 2013 году.

Кометы — малые небесные тела, движущиеся по вытянутым орбитам. Они состоят из замёрзших газов и космической пыли. По мере приближения к Солнцу частицы вещества нагреваются, образуя горящую голову и хвост кометы. Самая известная комета — Галлея — обращается вокруг Солнца за 76 лет.

Постепенно кометы разрушаются, превращаясь в поток более мелких частиц — метеороидов. Из-за небольших размеров они легко притягиваются планетами, но сгорают в плотной атмосфере. Горящие метеоры выглядят с Земли как падающие звёзды. Поэтому метеорный поток в просторечии называют звездопадом.

Движение объектов солнечной системы

Все объекты солнечной системы вращаются вокруг Солнца по эллиптическим орбитам. Наиболее близкую к Солнцу точку орбиты называют перигелием, а самую удалённую — афелием.

Орбиты планет расположены приблизительно в одной плоскости, поэтому периодически на Земном небе можно наблюдать Парад планет — явление, при котором несколько небесных тел будто бы выстраиваются в одну линию на небольшом угловом расстоянии друг от друга.

Межпланетное пространство

Планеты вращаются не в абсолютной пустоте — пространство между ними заполнено малыми небесными телами, вращающимися по собственным орбитам, блуждающими кометами, потоками метеорных тел и космической пылью.

Кроме того, Солнце излучает мощнейший поток заряженных частиц, называемый «солнечным ветром». Он распространяется по системе с чудовищной скоростью — до 1 200 км/с. Именно солнечный ветер порождает магнитные бури, полярные сияния и радиационные пояса планет.

Расположение Солнечной системы в Галактике

Солнце — одна из 200 миллиардов звёзд Млечного Пути, оно находится в одном из его спиральных рукавов — рукаве Ориона — на расстоянии 27 000 световых лет от центра Галактики.

Как планеты вращаются вокруг Солнца, так и Солнце вращается вокруг центра Галактики. Солнечная система движется сквозь космическое пространство со скоростью в 250 км/с — это в сотни тысяч раз быстрее самого мощного сверхзвукового самолёта.

Полный оборот вокруг центра Млечного Пути солнечная система совершает за 226 миллионов лет — эта величина называется галактическим годом.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет.

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями.

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик.

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения.

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун.

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы.

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну.

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году.

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Источник

Планеты-гиганты Солнечной системы

Планеты-гиганты Солнечной системы

Солнечная система

За орбитой планеты земного типа Марсом расположились так называемые «планеты-гиганты». Именно там сконцентрирован пояс из мелких космических тел – малых планет астероидов, несущих опасность нашей Земле. К находящимся на внешней стороне астероидного пояса относятся: Сатурн, Уран, Юпитер и Нептун – «великаны» газового типа. Превышают многократно Марс, Венеру и Землю, но всё же не могут быть больше показателей Солнца. Их характеристики – это весьма увлекательные вещи, вызывающие интерес не только у учёных, но и просто любознательных людей.

Расположился этот объект в пяти планетах от светила, самый крупный в нашей системе. Вес превышает в 318 раз наш, то есть Земли. Радиус гиганта равняется 69912 км, что в 19 раз превышает земные показатели, меньше диаметра Солнца в десять крат. Количество суток в году равно 4333 на Земле, то есть, почти 12 лет. В одних юпитерских сутках десять часов.

Планета Юпитер

Планета Юпитер

Полный состав планеты-гиганта Солнечной системы полностью до сих пор не изучен учёными. Известно, что в больших количествах присутствуют газы — ксенон, элемент аргон и криптон. Но главным образом состоит тело из водорода и газа гелия. Этим объясняются сверхвысокие температурные показатели внутри космического тела, вызывающие мощные вихри в зоне атмосферы, полосатые облака и Гигантское Красно Пятно, называемое «глаз Юпитера».

Некоторые астрономы выдвигали гипотезы о том, что Юпитер является несостоявшейся звездой и доказательством этому служит огромное количество спутников – 79 штук. Среди них крупнейшие Европа, Ио, любимцы астрономов Каллисто и Ганимед. У последнего, радиус равен 2634 км, что на 8% больше чем весь Меркурий – малыш системы. А Ио имеет собственную атмосферу. Учёные утверждают, что структура спутников схожа с представителями земного типа. На них наблюдаются такие явления, как действующие вулканы, нагрев внутри.

Планета Сатурн

Планета Сатурн

По величине вторая по счёту планета-гигант в Солнечной системе. Состав элементов схож со светилом. Показатели радиуса – 57350 километров, суток в одном году 10759, что для нас означает около 30 лет. Длительность суток – 10,5 часов (земных). По весу – в 95 раз больше земного.
Интересный факт: несмотря на большую массу, Сатурн представляет собой тело с наименьшей плотностью в Солнечной системе.

Окружён 62 спутниками, наибольшая величина у Титана, у которого также имеется собственная атмосфера. Ненамного меньше по размерам Мимас, Диона, Рея, Энцелад, Япет и Тефия. Перечисленные космические тела чаще наблюдаются учёными и о них данных больше. У Энцелада и Титана астрономы выявили намёки на геологическую активность, но её нельзя сравнить с земной. Она объясняется активным движением льдов.

Учёные не перестают изучать Энцелад, под толщей его льда расположены колоссальные запасы воды. Согласно исследованиям, положительные показатели температуры могут указывать на наличие в ней жизни.

Особое внимание уделяли кольцам Сатурна, ведь считалось, что ни у одной другой планеты-гиганта Солнечной системы нет такого явления. Состоят кольца изо льда, причём их размер может быть от пылинки до огромных фракций. В диаметре – 282000 км, а толщина минимальная – до километра. Именно по этой причине, если смотреть на Сатурн сбоку, то колец не видно.

На самом деле таким «ореолом» окружены все планеты-гиганты газового типа. Просто ещё нет таких возможностей разглядеть малозаметные кольца. Откуда они произошли до сих пор точно неизвестно, существует несколько ничем не подтверждённых гипотез.

Планеты-гиганты Солнечной системы

Планета Уран

Был открыт астрономом из Англии Гершелем Уильямом, название дано в честь бога неба. Первая планета, которую обнаружили в Новое время, чем расширили устоявшееся во мнении многих пределы системы. Из-за того, что она плохо рассматривается невооружённым глазом, считалась ранее тусклой звездой.

Седьмая от Солнца и третья по величине, в радиусе 25267 км, по весу 14 масс Земли. Уникальность заключается в том, что Уран как бы лежит «на боку» – наклон оси составляет 980. По своему вращению другие планеты-гиганты напоминают крутящийся волчок, а Уран это катящийся шар, который считают самым холодным телом – температура может достигать до -224 градусов. При этом Нептун, находящийся дальше от Солнца намного теплее. Периодически Уран поворачивается к Солнцу то южным, то северным полюсом. Так, 42 дня сменяется 42 ночами.

Интересный факт: наблюдая за Ураном, астроном Гершель был уверен, что перед ним комета, причина – тот самый наклон.

Год равняется 30685 земным суткам, в которых чуть больше 17 часов.

Имеет 27 спутников, самые известные — это Миранда, Умбриэль, Ариэль и Титания.

В состав атмосферы входит гелий, водород, а структура – твёрдые породы и лёд. В отличие от Юпитера, здесь всё «тихо», никаких мощных вихрей и сильных ветров.

Планета Нептун

Планета Нептун

Был открыт математическим путём в сентябре 1846 года, название в честь римского бога морей Нептуна. Расчёты проводили представители обсерватории Берлина, использовавшие для открытия работы французского учёного Леверье и англичанина Джона Куча Адамса.

Восьмая от Солнца, по показателям схожа с соседом – Ураном. В радиусе – 24547, год равняется 60190 суткам (164 года на Земле), вес – 17 масс нашей планеты. К особенностям относятся сильнейшие ветра, их скорость достигает 260 метров в секунду.

Интересный факт: ошибочно принято считать, что первооткрывателем Нептуна был Галилео Галилей. Он действительно наблюдал за комическим телом в конце декабря 1612 года и в конце января 1613 года, но решил, что это неподвижная звезда, прикованная к орбите Юпитера.

Имеет 14 спутников, самые известные Нереида, Протей и Тритон, обладающий атмосферой. На Тритоне также наблюдаются гейзеры с жидким азотом и геологическая активность.
Интересный факт: среди других спутников единственный, что движется в обратном от них направлении.

Интересные гипотезы

Ведущие астрономы мира в 2011 году провели ряд исследований и построили модель формирования нашей Солнечной системы. Оказывается, по гипотетической теории, примерно 600 миллионов лет назад существовала ещё одна планета «великан», параметры которой были схожи с Ураном. Планеты-гиганты мигрировали, и она или была выброшена за пределы системы, или оказалась на самой удалённой точке от Солнца. Таким образом, освободились места для новых участников системы и такие, как Земля, Меркурий, Марс, Венера, Плутон смогли обойти столкновения между собой. Её символически назвали планетой «Х», Тюхе, расположенной в облаке с названием Оорта.

Согласно расчётам учёных астрономов, благодаря существованию больших космических тел, земной тип защищён от комет, астероидов и метеоритов. И если бы их не было, то вряд ли наша планета смогла устоять перед «атакой» агрессивных космических тел, коих было бы в сотни раз больше.

Солнечная система состоит из главной звезды – Солнца и восьми планет. Первые четыре – Меркурий, Венера, Марс и Земля относятся к земному типу. Далее идут газовые планеты-гиганты Солнечной системы: Юпитер, Сатурн, Уран, Нептун.

Вообще, изучение астрономии и истории происхождения небесных тел – занятие весьма увлекательное. Не откладывайте, начните прямо сейчас пополнять копилку знаний!

Источник