Развитие представлений о природе света скорость света



Развитие представлений о природе света скорость света

Первые представления о природе света, возникшие у древних греков и египтян, в дальнейшем, по мере изобретения и усовершенствования различных оптических приборов, развивались и трансформировались.

В средние века стали известны эмпирические правила построения изображений, даваемых линзами. В 1590 г. З. Янсен построил первый микроскоп, в 1609 г. Г. Галилей изобрел телескоп. Количественный закон преломления света при прохождении границы раздела двух сред установил в 1620 г. В. Снеллиус. Математическая запись этого закона в виде , принадлежит Р. Декарту (1637 г.) Он же попытался объяснить этот закон исходя из корпускулярной теории. Впоследствии формулировкой принципа Ферма (1660 г.) был завершен фундамент построения геометрической оптики.

Дальнейшее развитие оптики связано с открытиями дифракции и интерференции света (Ф. Гримальди, 1665 г.), двойного лучепреломления (Э. Бартолин, 1669 г.) и с работами И. Ньютона, Р. Гука, Х. Гюйгенса.

В конце XVII века на основе многовекового опыта и развития представлений о свете возникли две мощные теории света – корпускулярная (Ньютон – Декарт) и волновая (Гук – Гюйгенс).

Корпускулярные воззрения на природу света И. Ньютон развил в стройную теорию истечения. Светкорпускулы, испускаемые телами и летящие с огромной скоростью. К анализу движения световых корпускул Ньютон, естественно, применил сформулированные им законы механики. Из этих представлений он легко вывел законы отражения и преломления света (рис. 7.11):

Однако из рассуждений Ньютона следовало, что скорость света в веществе больше скорости света в вакууме: .

Кроме того, в 1666 г. Ньютон показал, что белый свет является составным и содержит «чистые цвета», каждый из которых характеризуется своей преломляемостью (рис. 7.12), т.е. дал понятие дисперсии света. Эта особенность была объяснена различием масс корпускул.

В то же время в XVII в. (наряду с концепцией Декарта – Ньютона) развивалась противоположная, волновая теория Гука – Гюйгенса о том, что свет есть процесс распространения продольных деформаций в некоторой среде, пронизывающей все тело, в мировом эфире.

К концу XVII в. в оптике сложилось весьма своеобразное положение. И та и другая теории объясняли основные оптические закономерности: прямолинейность распространения, законы отражения и преломления. Дальнейшие попытки более полного объяснения наблюдаемых фактов приводили к затруднению в обеих теориях.

Гюйгенс не смог объяснить физической причины наличия различных цветов и механизм изменения скорости распространения света в эфире, пронизывающем различные среды.

Ньютону трудно было объяснить, почему при падении на границу двух сред происходит частичное и отражение, и преломление, а также интерференцию и дисперсию света. Однако огромный авторитет Ньютона и незавершенность волновой теории привели к тому, что весь XVIII в. прошел под знаком корпускулярной теории.

Начало XIX в. характеризуется интенсивным развитием математической теории колебаний и волн и ее приложением к объяснению ряда оптических явлений. В связи с работами Т. Юнга и О. Френеля победа временно перешла к волновой оптике.

· 1801 г. Т. Юнг формулирует принцип интерференции и объяснет цвета тонких пленок.

· 1818 г. О. Френель объясняет явление дифракции.

· 1840 г. О. Френель и Д. Арго исследуют интерференцию поляризованного света и доказывают поперечность световых колебаний.

· 1841 г. О. Френель строит теорию кристаллооптических колебаний.

· 1849 г. А. Физо измерил скорость света и рассчитал по волновой теории коэффициент преломления воды , что совпало с экспериментом.

· 1848 г. М. Фарадей открыл вращение плоскости поляризации света в магнитном поле (эффект Фарадея).

· 1860 г. Дж. Максвелл, основываясь на открытии Фарадея, пришел к выводу, что свет есть электромагнитные волны, а не упругие.

· 1888 г. Г. Герц экспериментально подтвердил, что электромагнитное поле распространяется со скоростью света с.

· 1899 г. П.Н. Лебедев измерил давление света.

Казалось, что спор полностью решен в пользу волновой теории света, так как в середине XIX в. были обнаружены факты, указывающие на связь и аналогию оптических и электрических явлений. Фарадеем, Максвеллом и другими учеными было показано, что свет – частный случай электромагнитной волны с . Только этот интервал длин волн оказывает воздействие на наш глаз и является собственно светом. Но и более длинные и более короткие волны имеют одну и ту же природу, что и свет.

Однако, несмотря на огромные успехи в электромагнитной теории света, к концу XIX в. начали накапливаться новые факты, противоречащие волновой теории света. Волновая теория не смогла объяснить распределение энергии в спектре излучения абсолютно черного тела и явление фотоэффекта, которое в 1890 г. исследовал А.Г. Столетов.

В 1900 г. Макс Планк показал, что излучение абсолютно черного тела можно объяснить, если предложить, что свет излучается не непрерывно, а порциями, квантами с энергией , где ν – частота, h – постоянная Планка.

Макс Планк (1858–1947). С 1874 г. он изучал физику у Густава Кирхгофа и Германа Гельмгольца в Мюнхенском университете. В 1930 г. Макс Планк возглавил Институт физики Кайзера Вильгельма (теперь Институт Макса Планка) и занимал этот пост до конца жизни. В 1900 г. в работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора принимает дискретные значения, пропорциональные частоте колебаний, чем положил начало квантовой физики. Также Макс Планк внес большой вклад в развитие термодинамики.

В 1905 г. Альберт Эйнштейн объяснил закономерности фотоэффекта на основе представления о световых частицах – «квантах» света, «фотонах», масса которых

.

Это соотношение связывает корпускулярные характеристики излучения, массу и энергию кванта, с волновыми – частотой и длиной волны.

Работы Планка и Эйнштейна явились началом развития квантовой физики.

Итак, обе теории – и волновая, и квантовая – одновременно развивались, имея свои несомненные достоинства и недостатки, и как бы дополняли друг друга. Ученые уже начали приходить к мнению, что свет является одновременно и волнами, и корпускулами. И вот в 1922 г. А. Комптон окончательно доказал, что рентгеновские электромагнитные волны – одновременно и корпускулы (фотоны, кванты), и волны.

Таким образом, длительный путь исследований привел к современным представлениям о двойственной корпускулярно-волновой природе света.

Интерес к оптическим явлениям понятен. Около 80 % информации об окружающем мире человек получает через зрение. Оптические явления всегда наглядны и поддаются количественному анализу. Очень многие основополагающие понятия, такие как интерференция, дифракция, поляризация и др., в настоящее время широко используются в областях, далеких от оптики, благодаря их предметной наглядности и точности теоретических представлений.

Примерно до середины XX столетия казалось, что оптика, как наука, закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях.

Наиболее важное событие в современной оптике – экспериментальное обнаружение методов генерации вынужденного излучения атомов и молекул – создание оптического квантового генератора (лазера) (А.М. Прохоров, Н.Г. Басов и Ч. Таунс, 1954 г.).

В современной физической оптике квантовые представления не противоречат волновым, а сочетаются на основе квантовой механики и квантовой электродинамики.

Источник

Развитие представлений о природе света скорость света

В школе Пифагора (550 г. до н.э.) утверждали, что лучи Солнца «проникают через густой и холодный эфир». Впервые появляется мысль о том что свет каким-то образом передается материальной средой — эфиром.

Pifagor

Платон (430 г. до н.э.) установил законы прямолинейного распространения и отражения света.

Platon

Аристотель (350 г. до н.э.) — свет есть нечто, исходящее из глаз. Лучи света как бы ощупывают предметы, доставляя наблюдателю информацию об их форме и качестве. Изучал законы преломления света.

Aristotel

До второй половины XVII в. оптика представляла, по существу, один из разделов геометрии. Световой луч — прямая линия и светящаяся точка — начало этой линии. Далее были установлены законы отражения и преломления света. Первый был известен еще в Древней Греции. Закон преломления света открыли независимо друг от друга голландский ученый Виллеброд Снеллиус (1591-1626) и французский ученый Рене Декарт (1596-1650).

SnelliusDekart

В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Читайте также:  Фон для автокад природа

Newton Huygens

Принцип Гюйгенса — это предположение о механизме распространения света. Светящийся предмет, так же как и звучащее тело, приводит в движение окружающую среду, и это движение «распространяется так же, как и при звуке, сферическими поверхностями и волнами». Принцип формулировался так.

«Каждая частица вещества, в котором распространяется волна, сообщает свое движение не только ближайшей частице, лежащей на прямой, проведенной от светящейся точки, но и необходимо сообщает его также всем другим частицам, которые касаются ее и препятствуют ее движению. Таким образом, вокруг каждой частицы должна образоваться волна, центром которой она является«.

Итак, свет, по Гюйгенсу, — это распространение импульсов, возбуждаемых светящимся телом в упругом эфире.

Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям.

Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдались законы равенства углов падения и отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало, что скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.

Волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме.

В 1801 г. Томас Юнг (1773-1829) формулирует гипотезу о том, что светящееся тело возбуждает колебательные движения в эфире; ощущение цветов зависит от частоты колебаний, возбужденных светом на сетчатке. Однако самым важным вкладом Юнга в оптику, обеспечившим победу волновых представлений, было открытие принципа интерференции. Изучая звуковые волны и волны на поверхности воды, Юнг убеждается в аналогии свойств этих волновых движений со свойствами света.

Young

Только в середине 19 века экспериментально было доказано, что скорость света в веществе меньше, чем в вакууме. Волновая теория получила всеобщее признание. Одно только смущало ученых. Никак не удавалось экспериментально обнаружить эту гипотетическую среду – эфир.

Однако и эти трудности были преодолены. В 60-е годы 19 века Д. Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны . Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме со скоростью электромагнитной волны. Электромагнитная природа света получила признание после опытов Г. Герца по исследованию электромагнитных волн (1887–1888 гг.).

0008 039 Dzhejms Maksvell Svet eto elektromagnitnaja volnaHeinrich Hertz

В 1900 г. немецкий физик М.Планк выдвинул гипотезу, согласно которой изучение электромагнитного поля происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой.

Plankeinstein

В 1905 г. А. Эйнштейн, исследуя проблемы фотоэффекта, распространил идею квантирования также и на поглощение веществом энергии излучения светового потока.

Квантовое представление о свете хорошо согласуется с законами излучения и поглощения света, законами взаимодействия света с веществом. Дальнейший путь развития теории привел к современным представлениям о двойственной корпускулярно — волновой природе света.

  • Вы здесь:  
  • Главная
  • 11 класс
  • Физика
  • Развитие представлений о природе света

Источник

Развитие взглядов на природу света. Скорость света

Приведите примеры естественных и искусственных источников света.

Закон прямолинейного распространения света.

Что такое полутень?

Закон отражения света.

Изучение нового материала.

Развитие оптики и технический прогресс. Создание оптических приборов.

Жизнь на Земле возникла и существует благодаря солнечному свету. Благодаря нему мы воспринимаем и познаем окружающий мир. Лучи света сообщают нам о положении близких и отдаленных предметов, об их форме и цвете. Свет, усиленный оптическими приборами, открывает человеку два полярных по масштабам мира: космический мир с его огромными протяженностями и микроскопический, населенный неразличимыми простым глазом мельчайшими организмами.

Основы оптики были заложены еще в глубокой древности. Варка прозрачного стекла была известна древним египтянам и жителям Мессопотамии за 1600 лет до нашей эры, а в древнем Риме из стекла с высоким совершенством изготовляли посуду и украшения. В XIII веке человечество получило первые оптические приборы — очки и увеличительные стекла. Значительно позднее, в начале XVII века, были изобретены зрительная труба и микроскоп.

В 1609 году итальянский ученый Галилей изобрел подзорную трубу с отрицательной линзой в качестве окуляра и широко использовал ее для наблюдений. В России очки и зрительные трубы появились в начале XVII веке.

Создание теории оптических приборов началось в конце XVII века благодаря трудам выдающихся ученых: Р. Декарта, П. Ферма, И. Ньютона, К. Гаусса и других. Большой вклад в развитие мировой науки и техники в области оптики внесли русские ученые М. В. Ломоносов, Л. Эйлер, В. Н. Чиколев, механики И. П. Кулибин, О. Н. Малофеев.

В России при Петре 1 оптика получила свое дальнейшее развитие. В 1725 году при Академии Наук была организована кафедра оптики и оптическая мастерская. Одним из руководителей кафедры оптики был Л. Эйлер, который написал книгу “Диоптрика”, где изложил основы геометрической оптики.

М. В. Ломоносов был первым русским ученым, который применил микроскоп для научных исследований, он создал целый ряд принципиально новых оптических приборов, разработал способы изготовления цветного стекла, цветной мозаики. Трудами выдающихся русских М.В.Ломоносова и Л.Эйлера в XVIII веке были заложены главнейшие основы для развития оптического производства в России. После революции 1917 года в Петрограде в 1918 году был организован Государственный Оптический Институт, его возглавил академик Д.С.Рождественский. ГОИ явился центром, определяющим научную политику в области создания отечественной оптическо-механической промышленности. В ГОИ работали выдающиеся ученые: С.И.Вавилов, А.А.Лебедев, И.В.Гребенщиков, Н.Качалов и другие.

В послевоенные годы наша оптическая промышленность с успехом осваивала производство уникальных высокоточных приборов, электронных микроскопов, интерферометров, приборов для космических исследований.

На базе явлений фотоэлектрического эффекта, открытого русским ученым А.Г.Столетовым, успешно развивается фотоэлектрическая область оптики, нашедшая применение в автоматике, телевидении, управлении космическими кораблями.

К числу крупных достижений отечественной оптики относятся работы профессора М.М.Русинова. Созданные им широкоугольные аэрофотообъективы выдвинули советскую аэрофотсъемку на ведущее место в мире.

Создание аппаратуры для фотографирования невидимой с Земли обратной стороны Луны явилось началом развития нового направления оптического приборостроения – космически оптических приборов.

Исследования советских физиков Н.Г.Басова и А.М.Прохорова в середине 50-х года XX века стали тем зерном, из которого выросла новая область науки – квантовая электроника. В 1971 году Денис Габор получил Нобелевскую премию за открытие голографии.

Еще в 1930 году в Германии Ламм передал по оптическим волокнам не только свет, но и изображение. Но технология изготовления стеклянных волокон была очень сложной, поэтому идеи Ламма на долгие годы остались забытыми.

Современная наука подняла на гребень волны волоконную оптику.

История развития взглядов на природу света

Первые представления о природе света были заложены в глубокой древности. Греческий философ Платон (427–327 гг до н.э.) создал одну из первых теорий света.

Евклид и Аристотель (300–250 гг до н.э.) опытным путем установили такие основные законы оптических явлений, как прямолинейное распространение света и независимость световых пучков, отражение и преломление. Аристотель впервые объяснил сущность зрения.

Несмотря на то, что теоретические положения древних философов, а позднее и ученых средних веков, были недостаточными и противоречивыми, они способствовали формированию правильных взглядов на сущность световых явлений и положили начало дальнейшему развития теории света и созданию разнообразных оптических приборов. По мере накопления новых исследований о свойствах световых явлений изменилась точка зрения на природу света. Ученые считают, что историю изучения природы света следует начинать с XVII века.

В XVII веке датский астроном Ремер (1644–1710) измерил скорость распространения света, итальянский физик Гримальди (1618–1663) открыл явление дифракции, гениальный английский ученый И.Ньютон (1642–1727) развил корпускулярную теорию света, открыл явления дисперсии и интерференции, Э.Бартолин (1625–1698) обнаружил двойное лучепреломление в исландском шпате, заложив тем самым основы кристаллооптики. Гюйгенс (1629–1695) положил начало волновой теории света.

В XVII веке делаются первые попытки теоретического обоснования наблюдаемых световых явлений. Корпускулярная теория света, развитая Ньютоном, состоит в том, что световое излучение рассматривается как непрерывный поток мельчайших частиц – корпускул, которые испускаются источником света и с большой скоростью летят в однородной среде прямолинейно и равномерно.

Читайте также:  Картинки двое он и она на природе

С точки зрения волновой теории света, основоположником которой является Х.Гюйгенс, световое излучение представляет собой волновое движение. Световые волны Гюйгенс рассматривал как упругие волны высокой частоты, распространяющиеся в особой упругой и плотной среде – эфире, заполняющем все материальные тела, промежутки между ними и межпланетные пространства.

Электромагнитная теория света была создана в середине XIX века Максвеллом (1831–1879). Согласно этой теории световые волны имеют электромагнитную природу, а световое излучение можно рассматривать как частный случай электромагнитных явлений. Исследования Герца и в дальнейшем П.Н.Лебедева также подтвердили, что все основные свойства электромагнитных волн совпадают со свойствами световых волн.

Лоренц (1896) установил взаимосвязь между излучением и структурой вещества и развил электронную теорию света, согласно которой входящие в состав атомов электроны могут совершать колебания с известным периодом и при определенных условиях поглощать или испускать свет.

Электромагнитная теория Максвелла в сочетании с электронной теорией Лоренса объясняла все известные тогда оптические явления и, казалась полностью раскрывала проблему природы света.

Световые излучения рассматривались как периодические колебания электрической и магнитной силы, распространяющейся в пространстве со скоростью 300000 километров в секунду. Лоренс полагал, что носитель этих колебаний – электромагнитный эфир, обладает свойствами абсолютной неподвижности. Однако созданная электромагнитная теория вскоре оказалась несостоятельной. Прежде всего эта теория не учитывала свойства реальной среды в которой распространяются электромагнитные колебания. Кроме того, с помощью этой теории нельзя было объяснить ряд оптических явлений, с которыми столкнулась физика на рубеже XIX и XX веков. К таким явления относятся процессы излучения и поглощения света, излучение абсолютно черного тела, фотоэлектрический эффект и другие.

Квантовая теория света возникла в начале XX века. Она была сформулирована в 1900 году, а обоснована в 1905 году. Основоположниками квантовой теории света являются Планк и Эйнштейн. Согласно этой теории, световое излучение испускается и поглощается частицами вещества не непрерывно, а дискретно, то есть отдельными порциями – квантами света.

Квантовая теория как бы в новой форме возродила корпускулярную теорию света, по существу же она явилась развитием единства волновых и корпускулярных явлений.

В результате исторического развития современная оптика располагает обоснованной теорией световых явлений, которая может объяснить различные свойства излучений и позволяет ответить на вопрос о том, в каких условиях те или иные свойства световых излучений могут проявляться. Современная теория света подтверждает его двойственную природу: волновую и корпускулярную.

Одна из характерных черт физика – количественный характер ее законов. Во многие соотношения, выражающие законы физики входят некоторые постоянные – так называемые физические константы. Это, например, гравитационная постоянная в законе всемирного тяготения, удельная теплоемкость в уравнении теплового баланса, скорость света в законе Эйнштейна, связывающем массу тела и его полную энергию. Многие физические постоянные названы так весьма условно. Действительно, нагревается вместо воды спирт и в соответствующих уравнениях приходится использовать иную величину теплоемкости. Такими “относительными” постоянными являются коэффициент трения, удельное сопротивление, плотность и т.д. Но есть и константы, которые не меняют своего значения. Гравитационная постоянная не зависит от того, взаимодействуют ли тела из свинца или из стали. Электроны в меди и золоте имеют одинаковый заряд. Так же универсальна и постоянная с – скорость света в вакууме.

Именно вследствие своей универсальности, такие константы названы мировыми или фундаментальными постоянными. Величины фундаментальных постоянных определяют важнейшие особенности всего физического мира – от элементарных частиц до крупнейших астрономических объектов.

Принадлежность скорости света к весьма небольшой группе мировых постоянных объясняет интерес к этой величине. Однако надо признать, что даже в этой группе она занимает выдающееся место. Скорость света связана с физическими законами, относящимися к самым, казалось бы, далеким разделам физики. Постоянная с входит в преобразования Лоренца в специальной теории относительности, она связывает электрическую и магнитную постоянные. Формула Эйнштейна Е=mc 2 позволяет рассчитать количество энергии, выделяющейся при ядерных превращениях. И везде мы сталкиваемся со скоростью света.

Такая распространенность константы с служит для современной физики ярким проявлением единства физического мира и правильности пути, по которому развивается наука о природе.

Понимание этого единства прошло не сразу. Со времени первого определения значения скорости света прошло более 300 лет. Постепенно константа с раскрывала перед учеными свои тайны. Иногда за измерениями этой величины стояли годы целенаправленных поисков, работы по усовершенствованию методов измерения и научных приборов. Иногда скорость света возникала в экспериментах возникала неожиданно, ставя перед учеными вопросы, касавшиеся самых глубин физической науки. Измерение константы опровергали и подтверждали физические теории и способствовали прогрессу техники.

Существуют прямые и косвенные методы измерения скорости света. К прямым методам относятся опыты О.Ремера, А.Физо, Л.Фуко, А.Майкельсона. К косвенным методам относятся опыты Д.Брадлея, Ф.Кольрауша, В.Вебера.

Прямой способ основан на измерении пути, пройденного светом и времени прохождения этого пути c=l/t . В 1676 году Ремер наблюдал за затмением спутника Юпитера – Ио. Спутник проходил пeред планетой, а затем погружался в ее тень и пропадал из поля зрения. Через 42 часа 28 минут Ио появлялся опять. Ремер проводил измерения, когда Земля ближе всего подходила к Юпитеру. Когда через несколько месяцев он повторил наблюдения, то оказалось, что спутник появился из тени на 22 минуты позже. Ученый объяснил, 22 минуты свет затрачивает на прохождение из предыдущей точки наблюдения до нынешней точки. Зная время запаздывания и расстояние, которым оно вызвано, можно определить скорость света. Вследствие неточности измерений и неточного значения радиуса Земли Ремер получил значение скорости света равное 215000 километров в секунду.

В лабораторных условиях скорость света впервые удалось измерять в 1849 году французскому физику Физо. В его опыте свет от источника, пройдя через линзу, падал на полупрозрачную стеклянную пластинку. Отразившись от пластинки узкий пучок направлялся на периферию быстро вращающегося колеса. Пройдя между зубцами свет достигал зеркала, находившегося на расстоянии нескольких километров от колеса. Отразившись от зеркала, свет проходил между зубцами колеса и затем попадал в глаз наблюдателя. Когда скорость вращения была маленькой, свет отраженный от зеркала был виден, при увеличении скорости вращения он исчезал. При дальнейшем увеличении скорости вращения, свет опять становился виден. То есть, за время распространения света до зеркала и обратно колесо успевало повернуться на столько, что на место прежней прорези вставала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом можно определить скорость света. В опыте Физо расстояние равнялось 8,6 километров, а скорость света получилась равной 313000 километров в секунду.

В основе косвенного способа измерения скорости света лежит представление о свете как об электромагнитной волне и ее скорость находится путем умножения длины волны на частоту колебаний волны.

Развивая теорию электродинамики Ампера, в 1846 году Вебер и Кальрауш получили значение скорости света 310000 километров в секунду, но полученный результат объяснить они не могли, так как не существовало ясного понимания механизма передачи взаимодействия электрических зарядов. Формально теория дальнодействующих электромагнитных сил Вебера не сталкивалась со сколь-нибудь серьезной оппозицией, но уже зрели идеи близкодействия, важнейшим следствием которых является конечность скорости распространения взаимодействий.

Современная физика решительно утверждает, что история скорости света на закончена. Свидетельством тому служат работы по измерению скорости света, выполненные в последние годы.

Резкое повышение точности измерения скорости электромагнитных волн произошло после Второй мировой войны. Исследования, проведенные в военных целях, кроме угрозы существованию человечеству принесли множество важнейших, чисто научных результатов. Один из них – развитие техники сверхвысоких частот. Были созданы генераторы и приемники излучения, работающие в диапазоне длин волн от 1 метра до нескольких миллиметров. В СВЧ-диапазоне волн удалось провести очень точные и, что самое важное, независимые измерения частоты излучения и его длины волны. Такой метод определения скорости света очень удобен, так как длины волн порядка одного сантиметра можно определить с очень высокой точностью.

Читайте также:  Настольный теннис на природе

Конечно, не следует думать, что измерить величину с , используя новую технику, было очень просто. Каждый ученый, работавший в этой области, ставил перед собой задачу-максимум: провести предельно точные измерения длины волны и частоты для получения возможно более точного значения скорости света, а работа на пределе точности всегда сложна.

Определенным итогом измерения скорости света в СВЧ-диапазоне стала работа американского ученого К.Фрума, результаты которой были опубликованы в 1958 году. Ученый получил результат 299792,50 километров в секунду. В течение длительного периода эта величина считалась наиболее точной.

Для того, чтобы повысить точность определения скорости света требовалось создание принципиально новых методов, которые позволили бы проводить измерения в области больших частот и соответственно, меньших длин волн. Возможность разработки таких методов появилась после создания оптических квантовых генераторов – лазеров. Точность определения скорости света возросла по отношению к опытам Фрума практически в 100 раз. Способ определения частот с помощью использования лазерного излучения дает величину скорости света, равную 299792,462 километра в секунду.

Физики продолжают исследовать вопрос о постоянстве скорости света во времени. Исследования скорости света могут дать еще много нового для познания природы, неисчерпаемой в своем разнообразии. 300-летняя история фундаментальной постоянной с отчетливо демонстрируют ее связи с важнейшими проблемами физики.

1. Из древнегреческой легенды о Персее:

“Не далее полета стрелы было чудовище, когда Персей взлетел высоко в воздух. Тень его упала в море, и с яростью ринулось чудовище на тень героя. Персей смело бросился с высоты на чудовище и глубоко вонзил ему в спину изогнутый меч…”

Вопрос: что такое тень и благодаря какому физическому явлению она образуется? Нарисуйте ход лучей.

2. Из африканской сказки “Выборы вождя”:

“Собратья, – молвил Аист, степенно выйдя в середину круга. – Мы спорим с самого утра. Смотрите, наши тени уже укоротились и скоро совсем исчезнут, ибо близится полдень. Так давайте еще до того, как солнце минует зенит, придем к какому-то решению…”

Вопрос: почему длины теней, которые отбрасывали люди стали укорачиваться? Ответ поясните рисунком. Есть ли на Земле такое место, где изменение длины тени минимально?

3. Из итальянской сказки “Человек, который искал бессмертие”:

“И тут Грантэста увидел что-то, что показалось ему страшнее бури. К долине приближалось чудовище, летевшее быстрее, чем луч света. У него были кожистые крылья, бородавчатый мягкий живот и огромная пасть с торчащими зубами…”

Вопрос: что неверно с точки зрения физики в этом отрывке?

4. Из древнегреческой легенды о Персее:

“Скорей отвернулся Персей от горгон. Боится увидеть он их грозные лица: ведь один взгляд и в камень обратится он. Взял Персей щит Афины-Паллады – как в зеркале отразились в нем горгоны. Которая же из них Медуза?

Как падает с неба орел на намеченную жертву, так ринулся Персей к спящей Медузе. Он глядит в ясный щит, чтоб верней нанести удар…”

Вопрос: какое физическое явление использовал Персей, чтобы обезглавить Медузу? Нарисуйте возможный ход лучей.

Источник

Развитие представлений о природе света

Первые представления о природе света были известны еще у древних греков египтян. Со временем изобретались новые оптические приборы, которые развивались и трансформировались. А конец XVII века знаменит тем, что появляются две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Корпускулярная и волновая теории света

Корпускулярная теория рассматривает свет как поток частиц, которые испускаются при помощи светящихся тел. Ньютон предполагал, что их движение подчинено законам механики. Понятие отражения света рассматривалось также, как и отражение упругого шарика от плоскости. Преломление света было объяснено изменением скорости корпускул при переходе из одной среды в другую. Случай с преломлением корпускулярная теория привела к такому виду записи закона:

sin φ sin ψ = υ c = n , где с – скорость света в вакууме, υ — скорость распространения света в среде. Имеем, что n > 1 , тогда, исходя из нее, скорость света в средах должна была быть больше скорости света в вакууме. Также Ньютон предпринял попытки объяснить возникновение интерференционных полос, которые были подвержены определенной периодичностью световых процессов. Поэтому корпускулярная теория содержала некоторые элементы волновых представлений.

Волновая теория рассматривала свет в качестве волнового процесса, напоминающего механические волны. В основу теории был заложен принцип Гюйгенса, из которого следовало, что каждая точка, до которой доходит волна, определяется как центр вторичных волн. Отсюда понятно, огибающая этих волн, изображенная на плоскости A 1 A 2 рисунка 3 . 6 . 1 определяет положение волнового фронта в последующий момент времени.

По Гюйгенсу волновой фронт – это геометрическое скопление точек, от которых доходит волновое возмущение одновременно.

Данный принцип объяснял законы отражения и преломления. На рисунке 3 . 6 . 1 изображены представления Гюйгенса об определении направления распространения волны, которая преломляется на границах двух прозрачных сред.

Рисунок 3 . 6 . 1 . Построения Гюйгенса для определения направления преломленной волны.

Если преломление происходит на границе вакуум-среды, тогда, исходя из волновой теории, приходим к результату:

sin ψ sin φ = c υ = n .

Закон преломления получается из волновой теории. Но он противоречит формуле Ньютона. Волновая теория говорит о том, что υ < c , когда по корпускулярной теории υ > c .

Астрономический метод измерения скорости

Начало XVIII века – это было временем существования двух противоположных подходов к объяснению природы света: корпускулярная и волновая. Обе трактовали прямолинейное распространение света, законы отражения и преломления. Начало XIX столетия стало переломным моментом.

Корпускулярная теория отвергнута, а волновая была принята. Это произошло, благодаря исследованиям Т. Юнга и О. Френеля в области явлений интерференции и дифракции. Точно объяснить все явления было возможно, основываясь на волновой теории. В 1851 году ее справедливость доказана Ж. Фуко экспериментально при измерении скорости распространения света в воде, получив υ < c .

Середина XIX века – это время общепризнанной волновой теории. Но вопрос о природе световых волн оставался нерешенным.

Со временем Максвелл установил общие законы электромагнитного поля, приведшие его к тому, что свет является электромагнитными волнами. Подтверждением данного факта было совпадение скорости света в вакууме с электродинамической постоянной c = 1 ε 0 μ 0 . Позднее электромагнитную природу света признали после опытов Герца, связанных с исследованием электромагнитных волн. П.Н. Лебедева изучал и также проводил опыты, связанные с изменением светового давления, благодаря чему электромагнитная теория света и стала рассматриваться, как факт.

На роль определения природы света повлияло определение ее скорости. Еще с конца XVII пытались измерить скорость света при помощи различных методов. Наличие современной техники расширило возможности и помогло точно измерить скорость света в независимости от длины волны λ и частоты υ ( c = λ · υ ) . Поэтому пришли к выводу, что c = 299792458 ± 1 , 2 l . Значение отличается от предыдущего полученного более, чем на два порядка.

Важная роль света в жизни была отмечена давно. Большое количество информации предоставляется именно при помощи света. Но существует не только видимый свет, но и невидимый для наших глаз: инфракрасный (ИК) и ультрафиолетовый (УФ).

Свет и электромагнитное излучение иных диапазонов схожи по физическим свойствам. Отличительные же черты различных участков спектра – это длина волны λ и частота υ . На рисунке 3 . 6 . 2 располагается шкала значения электромагнитных волн.

Рисунок 3 . 6 . 2 . Шкала электромагнитных волн. Границы между различными диапазонами условны.

Оптический диапазон измерения волн – нанометр ( н м ) и микрометр ( м к м ) :

1 н м = 10 — 9 м = 10 — 7 с м = 10 — 3 м к м .

С помощью электромагнитной теории смогли объяснить оптические явления. Но она не позволила завершить понимание природы света. В XX веке было выявлено, что электромагнитная теория не сможет помочь в толковании явлений атомного масштаба, которые возникают после взаимодействия света с веществом. Такие понятия, как излучение черного тела, эффект Комптона и другие требовали введения квантовых представлений.

При изучении и углублении световых свойств науке снова пришлось вернуться к теории корпускул – световых квантов. Когда при проведении опытов замечали проявления волновых и корпускулярных волн, то имел смысл говорить о том, что свет имеет двойственную природу. Иначе говоря, он характеризуется корпускулярно-волновым дуализмом.

Источник