Щелочной металл натрий встречается в природе в виде оксида



№11 Натрий

Натроном первоначально называли гидроксид натрия. В 1807 г. Дэви путем электролиза слегка увлажненных твердых щелочей получил свободные металлы — калий и натрий, назвав их потассий (Potassium) и содий (Sodium). Берцелиус, и затем Гесс в России предложили названия Natrium / Натрий, которое и закрепилось.

Нахождение в природе, получение:

В природе щелочные металлы в свободном виде не встречаются. Натрий входит в состав различных соединений. Наиболее важным является соединение натрия с хлором NaCl, которое образует залежи каменной соли (Донбасс, Соликамск, Соль-Илецк и др.). Хлорид натрия содержится также в морской воде и соляных источниках. Натрий относится к числу распространенных элементов. Содержание натрия в земной коре составляет 2,64%.
Получают электролизом расплавленного хлорида натрия или гидроксида натрия. Применяется также и восстановление его оксидов, хлоридов, карбонатов алюминием, кремнием, кальцием, магнием при нагревании в вакууме.

Физические свойства:

Натрий — серебристо-белый металл, его плотность — 0,97 г/см 3 , очень мягкий, легко режется ножом. Между атомами металлическая связь. Для вещества с такой связью характерны металлический блеск, пластичность, мягкость, хорошая электрическая проводимость и теплопроводность.

Химические свойства:

Атом натрия при химическом взаимодействии легко отдает валентные электроны, переходя в положительно заряженный ион. На воздухе быстро окисляется, поэтому его хранят под слоем керосина.
При сгорании в избытке кислорода образует пероксид натрия, Na2O2
С водородом при нагревании образует гидрид Na + H2 = 2NaH
Легко взаимодействует со многим неметаллами — галогенами, серой, фосфором и др.
Бурно реагирует с водой: 2Na + 2H2O = 2NaOH + H2

Важнейшие соединения:

Оксид натрия , Na2O (бесцветный), реагирует с парами воды, углекислым газом, потому хранить лучше в безводном бензоле.
При непосредственной реакции натрия с кислородом получается смесь оксида и пероксида натрия. Для получения чистого оксида можно использовать реакцию: Na2O2 + 2Na = 2Na2O
Пероксид натрия , Na2O2 (желтый) кристаллическое вещество с ионной решеткой, взаимодействует с влажным углекислым газом воздуха, выделяя кислород: 2Na2O2 + 2CO2 = 2Na2CO3 + O2
Гидроксид натрия , NaOH — кристаллическое белое вещество, сравнительно легкоплавкое, термически очень устойчиво. При нагревании испаряется без потери воды. Хорошо растворяется в воде, в спиртах.
Галогениды натрия , бесцветные кристаллические вещества, хорошо растворимы в воде, за исключением NaF. Для них характерны восстановительные свойства.
Сульфид натрия , — Na2S. Бесцветное кристаллическое вещество с ионной решеткой. Хорошо растворимо в воде, является сильным восстановителем.
Соли , все соли хорошо растворимы, являются сильными электролитами.
Гидрид натрия , NaH — бесцветное кристаллическое вещество с кристаллической решеткой типа NaCl, анионом является H — . Получают пропусканием водорода над расплавленными металлом. Подвергается термической диссоциации не плавясь, легко разлагаются водой:
2NaH = 2Na + H2
NaH + H2O = NaOH + H2

Применение:

Соединения натрия — важнейшие компоненты химических производств. Используются в мыловарении, производстве стекла, средств бытовой химии.
Натрий важен для большинства форм жизни, включая человека. В живых организмах ионы натрия вместе с ионами калия выполняют функцию передатчиков нервного импульса. Также его ионы играют важную роль в поддержании водного режима организма.

Источник

Щелочные металлы

К щелочным металлам относят химические элементы: одновалентные металлы, составляющие Ia группу: литий, натрий, калий, рубидий, цезий и франций.

Эти металлы очень активны, быстро окисляются на воздухе и бурно реагируют с водой. Их хранят под слоем керосина из-за их сильной реакционной способности.

Натрий под слоем керосина

Общая характеристика

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Щелочные металлы

  • Li — 2s 1
  • Na — 3s 1
  • K — 4s 1
  • Rb — 5s 1
  • Cs — 6s 1
  • Fr — 7s 1
Природные соединения
  • NaCl — галит (каменная соль)
  • KCl — сильвит
  • NaCl*KCl — сильвинит

Галит и сильвит

Получение

Получить такие активные металлы электролизом водного раствора — невозможно. Для их получения применяют электролиз расплавов при высоких температурах (естественно — безводных):

Читайте также:  Гнезда голубей в природе

NaCl → Na + Cl2↑ (электролиз расплава каменной соли)

Химические свойства

Одной из особенностей щелочных металлов является их реакция с кислородом. Литий в такой реакции преимущественно образует оксид, натрий — пероксид, калий, рубидий и цезий — супероксиды.

K + O2 → KO2 (супероксид калия)

Помните, что металлы никогда не принимают отрицательных степеней окисления. Щелочные металлы одновалентны, и проявляют постоянную степень окисления +1 в различных соединениях: гидриды, галогениды (фториды, хлориды, бромиды и йодиды), нитриды, сульфиды и т.д.

Li + H2 → LiH (в гидридах водород -1)

Na + F2 → NaF (в фторидах фтор -1)

Na + S → Na2S (в сульфидах сера -2)

K + N2 → K3N (в нитридах азот -3)

Щелочные металлы бурно взаимодействуют с водой, при этом часто происходит воспламенение, а иногда — взрыв.

Na + H2O → NaOH + H2↑ (воду можно представить в виде HOH — натрий вытесняет водород)

Иногда в задачах может проскользнуть фраза такого плана: «. в ходе реакции выделился металл, окрашивающий пламя горелки в желтый цвет». Тут вы сразу должны догадаться: речь, скорее всего, про натрий.

Щелочные металлы по-разному окрашивают пламя. Литий окрашивает в алый цвет, натрий — в желтый, калий — в фиолетовый, рубидий — синевато-красный, цезий — синий.

Окраска пламени щелочными металлами

Оксиды щелочных металлов

Имеют общую формулу R2O, например: Na2O, K2O.

Получение

Получение оксидов щелочных металлов возможно в ходе реакции с кислородом. Для лития все совсем несложно:

В подобных реакциях у натрия и калия получается соответственно пероксид и супероксид, что приводит к затруднениям. Как из пероксида, так и из супероксида, при желании можно получить оксид:

Химические свойства

По свойствам эти оксиды являются основными. Они хорошо реагируют c водой, кислотными оксидами и кислотами:

Li2O + H2O → LiOH (осн. оксид + вода = основание — реакция идет, только если основание растворимо)

Na2O + SO2 → Na2SO3 (обратите внимание — мы сохраняем СО серы +4)

Гидроксиды щелочных металлов

Относятся к щелочам — растворимым основаниям. Наиболее известные представители: NaOH — едкий натр, KOH — едкое кали.

Получение

Гидроксиды щелочных металлов получаются в ходе электролиза водных растворов их солей, в реакциях обмена, в реакции щелочных металлов и их оксидов с водой:

KCl + H2O → (электролиз!) KOH + H2 + Cl2 (на катоде выделяется водород, на аноде — хлор)

Калий с водой

Химические свойства

Проявляют основные свойства. Хорошо реагируют с кислотами, кислотными оксидами и солями, если в ходе реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

LiOH + H2SO4 → LiHSO4 + H2O (соотношение 1:1, кислота в избытке — получается кислая соль)

2LiOH + H2SO4 → Li2SO4 + 2H2O (соотношение 2:1, основание в избытке — получается средняя соль)

KOH + SO2 → KHSO3 (соотношение 1:1 — получается кислая соль)

2KOH + SO2 → K2SO3 + H2O (соотношение 2:1 — получается средняя соль)

С амфотерными гидроксидами реакции протекают с образованием комплексных солей (в водном растворе) или с образованием оксиелов — смешанных оксидов (при высоких температурах — прокаливании).

NaOH + Al(OH)3 → Na[Al(OH)4] (в водном растворе образуются комплексные соли)

NaOH + Al(OH)3 → NaAlO2 + H2O (при прокаливании образуется оксиел — смесь двух оксидов: Al2O3 и Na2O, вода испаряется)

Реакции щелочей с галогенами заслуживают особого внимания. Без нагревания они идут по одной схеме, а при нагревании эта схема меняется:

NaOH + Cl2 → NaClO + NaCl + H2O (без нагревания хлор переходит в СО +1 и -1)

NaOH + Cl2 → NaClO3 + NaCl + H2O (с нагреванием хлор переходит в СО +5 и -1)

В реакциях щелочей с йодом образуется исключительно иодат, так как гипоиодит неустойчив даже при комнатной температуре, не говоря о нагревании. С серой реакция протекает схожим образом:

NaOH + I2 → NaIO3 + NaI + H2O (с нагреванием)

Выделение йода

NaOH + S → Na2S + Na2SO3 + H2O (сера переходит в СО -2 и +4)

Читайте также:  Нужны конкурсы на природе

Уникальным является также взаимодействие щелочей с кислотным оксидом NO2, который соответствует сразу двум кислотам — и азотной, и азотистой.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Металлы I группы главной подгруппы (Li, Na, K, Rb, Cs)

Важным химическим продуктом с глубокой древности являлась зола. Мылкий раствор, образующийся при кипячении золы с водой (щёлок), был первым моющим средством, созданным человеком. В Средние века люди научились выделять из золы соединения, которые и делали ее раствор мылким, — соду и поташ (карбонаты натрия и калия). Долгое время названия этих двух солей означали лишь разные виды золы: поташом или кали называли золу, остающуюся после сгорания древесины, соломы, камыша и папоротника (эта зола богата калийными солями), а содой или натроном – золу других травянистых растений, в которых преобладали соли натрия.

На Руси производство поташа существовало уже в XI в. Золу, образующуюся при сжигании соломы или древесины, обрабатывали водой, а полученный раствор после фильтрования выпаривали. Сухой остаток кроме карбоната калия содержал также и другие примеси в виде калийных солей.

В отличие от поташа, сода встречается в природе, например в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при изготовлении красящих веществ и при варке пищи. Плиний Старший писал, что в дельте Нила соду выделяли из речной воды. Сода, получаемая из растительной золы, также содержала большое количество других солей. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или черный цвет.

Химическое различие между содой и поташом окончательно установил в 1758 г. немецкий химик А. С. Маргграф. А в 1807 г. Г. Дэви провёл электролиз расплавов щелочей – гидроксида натрия и гидроксида калия, выделив металлические натрий и калий.

В XIX в. были открыты литий, цезий и рубидий. Так, в 1860 – 1861 г. немецкие ученые Р. В. Бунзен и Г. Р. Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них два новых элемента. По цвету наиболее сильных линий спектра один из них назвали рубидием (от лат. rubidus – «темно – красный»), а другой – цезием (от лат. caesius – «небесно-голубой»).

Щелочные металлы в природе

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калий принадлежат к распространенным элементам: содержание каждого из них в земной коре равно приблизительно 2%. Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида или двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение встречаются редко. Наиболее важными из них являются соликамские месторождения Пермского края, стассфуртские в Германии и эльзасские – во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль и в зимние месяцы осаждается толстым слоем на дне.

Источник

Натрий

Натрий — элемент 3-го периода и IA-группы Периодической системы, порядковый номер 11. Электронная формула атома [10Ne]3s 1 , степени окисления +1 и 0. Имеет малую электроотрицательность (0,93), проявляет только металлические (основные) свойства. Образует (как катион) многочисленные соли и бинарные соединения. Почти все соли натрия хорошо растворимы в воде.

Читайте также:  Красивая природа кольского полуострова

В природе — пятый по химической распространенности элемент (второй среди
металлов), встречается только в виде соединений. Жизненно важный элемент для всех организмов.

Натрий, катион натрия и его соединения окрашивают пламя газовой горелки в ярко-желтый цвет (качественное обнаружение).

Натрий Na. Серебристо-белый металл, легкий, мягкий (режется ножом), низкоплавкий. Хранят натрий в керосине. С ртутью образует жидкий сплав — амальгаму (до 0,2 % Na).

Весьма реакционноспособный, во влажном воздухе натрий медленно покрывается гидроксидной пленкой и теряет блеск (тускнеет):

натрий во влажном воздухе

Натрий химически активен, сильный восстановитель. Воспламеняется на воздухе при умеренном нагревании (>250 °С), реагирует с неметаллами:

2Na + O2 = Na2O2 2Na + H2 = 2NaH

2Na + CI2 = 2NaCl 2Na + S = Na2S

6Na + N2 = 2Na3N 2Na + 2C = Na2C2

Очень бурно и с большим экзо-эффектом натрий реагирует с водой:

2Na + 2H2O = 2NaOH + Н2^ + 368 кДж

От теплоты реакции кусочки натрия расплавляются в шарики, которые начинают беспорядочно двигаться из-за выделения Н2. Реакция сопровождается резкими щелчками вследствие взрывов гремучего газа (Н2 + O2). Раствор окрашивается фенолфталеином в малиновый цвет (щелочная среда).

В ряду напряжений натрий стоит значительно левее водорода, из разбавленных кислот НС1 и H2SO4 вытесняет водород (за счет Н20 и Н ).

Получение натрия в промышленности:

получение натрия

(см. также ниже получение NaOH).

Натрий применяется для получения Na2O2, NaOH, NaH, а также в органическом синтезе. Расплавленный натрий служит теплоносителем в ядерных реакторах, а газообразный — используется как наполнитель желтосветных ламп наружного освещения.

Оксид натрия Na2O. Основный оксид. Белый, имеет ионное строение (Na + )2O 2- . Термически устойчивый, при прокаливании медленно разлагается, плавится под избыточным давлением пара Na. Чувствителен к влаге и углекислому газу в воздухе. Энергично реагирует с водой (образуется сильнощелочной раствор), кислотами, кислотными и амфотерными оксидами, кислородом (под давлением). Применяется для синтеза солей натрия. Не образуется при сжигании натрия на воздухе.

Уравнения важнейших реакций:

реакции оксида натрия

Получение: термическое разложение Na2O2 (см.), а также сплавление Na и NaOH, Na и Na2O2:

2Na + 2NaOH = 2NaаO + H2 (600 °C)

2Na + Na2O2 = 2NaаO (130-200 °C)

Пероксид натрия Na2O2. Бинарное соединение. Белый, гигроскопичный. Имеет ионное строение (Na + )2O2 2- . При нагревании разлагается, плавится под избыточным давлением О2. Поглощает углекислый газ из воздуха. Полностью разлагается водой, кислотами (выделение О2 при кипячении — качественная реакция на пероксиды). Сильный окислитель, слабый восстановитель. Применяется для регенерации кислорода в изолирующих дыхательных приборах (реакция с СО2), как компонент отбеливателей ткани и бумаги. Уравнения важнейших реакций:

реакции пероксида натрия

Получение: сжигание Na на воздухе.

Гидроксид натрия NaOH. Основный гидроксид, щелочь, техническое название едкий натр. Белые кристаллы с ионным строением (Na + )(OH — ). Расплывается на воздухе, поглощая влагу и углекислый газ (образуется NaHCО3). Плавится и кипит без разложения. Вызывает тяжелые ожоги кожи и глаз.

Хорошо растворим в воде (с экзо-эффектом, +56 кДж). Реагирует с кислотными оксидами, нейтрализует кислоты, вызывает кислотную функцию у амфотерных оксидов и гидроксидов:

реакции гидроксида натрия

электролиз гидроксида натрия

Раствор NaOH разъедает стекло (образуется NaSiО3), корродирует поверхность алюминия (образуются Na[Al(OH)4] и Н2).

Получение NaOH в промышленности:

а) электролиз раствора NaCl на инертном катоде

получение гидроксида натрия

б) электролиз раствора NaCl на ртутном катоде (амальгамный способ):

получение гидроксида натрия

(освобождающуюся ртуть возвращают в электролизер).

Едкий натр — важнейшее сырье химической промышленности. Используется для получения солей натрия, целлюлозы, мыла, красителей и искусственного волокна; как осушитель газов; реагент в извлечении из вторичного сырья и очистке олова и цинка; при переработке руд алюминия (бокситов).

Источник